Display options
Share it on

Front Neurol. 2019 Mar 26;10:279. doi: 10.3389/fneur.2019.00279. eCollection 2019.

Functional Ultrasound Imaging of Spinal Cord Hemodynamic Responses to Epidural Electrical Stimulation: A Feasibility Study.

Frontiers in neurology

Pengfei Song, Carlos A Cuellar, Shanshan Tang, Riazul Islam, Hai Wen, Chengwu Huang, Armando Manduca, Joshua D Trzasko, Bruce E Knudsen, Kendall H Lee, Shigao Chen, Igor A Lavrov

Affiliations

  1. Department of Radiology, Mayo Clinic, Rochester, MN, United States.
  2. Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.
  3. Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States.
  4. Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, United States.
  5. Department of Neurology, Mayo Clinic, Rochester, MN, United States.
  6. Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.

PMID: 30972010 PMCID: PMC6445046 DOI: 10.3389/fneur.2019.00279

Abstract

This study presents the first implementation of functional ultrasound (fUS) imaging of the spinal cord to monitor local hemodynamic response to epidural electrical spinal cord stimulation (SCS) on two small and large animal models. SCS has been successfully applied to control chronic refractory pain and recently was evolved to alleviate motor impairment in Parkinson's disease and after spinal cord injury. At present, however, the mechanisms underlying SCS remain unclear, and current methods for monitoring SCS are limited in their capacity to provide the required sensitivity and spatiotemporal resolutions to evaluate functional changes in response to SCS. fUS is an emerging technology that has recently shown promising results in monitoring a variety of neural activities associated with the brain. Here we demonstrated the feasibility of performing fUS on two animal models during SCS. We showed

Keywords: electrical stimulation; functional ultrasound; hemodynamic responses; spinal cord; spinal cord injury; ultrafast imaging

References

  1. AJNR Am J Neuroradiol. 1999 Nov-Dec;20(10):1773-4 - PubMed
  2. Spinal Cord. 2000 Aug;38(8):473-89 - PubMed
  3. Nature. 2001 Jul 12;412(6843):150-7 - PubMed
  4. Ross Fiziol Zh Im I M Sechenova. 2001 Sep;87(9):1161-70 - PubMed
  5. J Comp Neurol. 1958 Aug;110(1):75-103 - PubMed
  6. Spinal Cord. 2004 Jul;42(7):401-16 - PubMed
  7. J Neurosci Methods. 2006 Oct 30;157(2):253-63 - PubMed
  8. J Neurophysiol. 2006 Oct;96(4):1699-710 - PubMed
  9. IEEE Trans Image Process. 2002;11(3):188-200 - PubMed
  10. J Neurosci. 2008 Jun 4;28(23):6022-9 - PubMed
  11. J Neurosci. 2008 Jul 30;28(31):7774-80 - PubMed
  12. IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Mar;56(3):489-506 - PubMed
  13. Nat Neurosci. 2009 Oct;12(10):1333-42 - PubMed
  14. IEEE Trans Ultrason Ferroelectr Freq Control. 2010 May;57(5):1096-111 - PubMed
  15. IEEE Trans Neural Syst Rehabil Eng. 2010 Dec;18(6):637-45 - PubMed
  16. IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Jan;58(1):134-47 - PubMed
  17. Lancet. 2011 Jun 4;377(9781):1938-47 - PubMed
  18. Nat Methods. 2011 Jul 03;8(8):662-4 - PubMed
  19. Parkinsonism Relat Disord. 2012 Feb;18(2):213-4 - PubMed
  20. Neurol Med Chir (Tokyo). 2012;52(7):470-4 - PubMed
  21. Neuromodulation. 2013 May-Jun;16(3):276-9 - PubMed
  22. J Clin Neurosci. 2013 Aug;20(8):1155-6 - PubMed
  23. IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Mar;60(3):492-506 - PubMed
  24. J Neurosci. 2013 Dec 4;33(49):19326-40 - PubMed
  25. Neuroimage. 2014 May 1;91:344-52 - PubMed
  26. Curr Pain Headache Rep. 2014 Apr;18(4):406 - PubMed
  27. Neuroimage. 2014 Jul 15;95:176-84 - PubMed
  28. Brain. 2014 May;137(Pt 5):1394-409 - PubMed
  29. Neuroimage. 2014 Nov 1;101:138-49 - PubMed
  30. Neuromodulation. 2014 Aug;17(6):515-50; discussion 550 - PubMed
  31. Nat Commun. 2014 Oct 03;5:5023 - PubMed
  32. Brain Res. 2015 Mar 10;1600:84-92 - PubMed
  33. IEEE Trans Med Imaging. 2015 Nov;34(11):2271-85 - PubMed
  34. Nat Methods. 2015 Sep;12(9):873-8 - PubMed
  35. PLoS One. 2015 Jul 24;10(7):e0133998 - PubMed
  36. Nat Methods. 2015 Sep;12(9):831-4 - PubMed
  37. Neuroimage. 2016 Jan 1;124(Pt A):752-761 - PubMed
  38. IEEE Trans Med Imaging. 2017 Jan;36(1):251-262 - PubMed
  39. Neuroimage. 2018 Jan 1;164:131-143 - PubMed
  40. Ultrasonics. 2017 May;77:17-21 - PubMed
  41. Neuroimage. 2017 Apr 1;149:267-274 - PubMed
  42. IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Apr;64(4):706-716 - PubMed
  43. Neuroscientist. 2017 Dec;23(6):664-680 - PubMed
  44. Mayo Clin Proc. 2017 Apr;92(4):544-554 - PubMed
  45. Neuroimage. 2018 Jan 1;164:48-58 - PubMed
  46. Sci Rep. 2017 Aug 4;7(1):7304 - PubMed
  47. IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Nov;64(11):1776-1781 - PubMed
  48. Sci Transl Med. 2017 Oct 11;9(411):null - PubMed
  49. Front Neuroanat. 2017 Sep 22;11:82 - PubMed
  50. Curr Opin Neurobiol. 2018 Jun;50:128-135 - PubMed
  51. Front Hum Neurosci. 2018 Mar 08;12:83 - PubMed
  52. Elife. 2018 Jun 28;7: - PubMed
  53. Ann Neurol. 1987 May;21(5):470-4 - PubMed
  54. N Y State J Med. 1973 Dec 15;73(24):2868-72 - PubMed
  55. Anesth Analg. 1967 Jul-Aug;46(4):489-91 - PubMed
  56. Lancet. 1976 Jun 26;1(7974):1383-6 - PubMed
  57. Radiology. 1995 Oct;197(1):183-90 - PubMed
  58. West J Med. 1993 Feb;158(2):182 - PubMed

Publication Types