Display options
Share it on

Proteomes. 2019 Apr 25;7(2). doi: 10.3390/proteomes7020017.

Isolation and Characterization of Small Extracellular Vesicles from Porcine Blood Plasma, Cerebrospinal Fluid, and Seminal Plasma.

Proteomes

Helena Kupcova Skalnikova, Bozena Bohuslavova, Karolina Turnovcova, Jana Juhasova, Stefan Juhas, Marie Rodinova, Petr Vodicka

Affiliations

  1. Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 27721 Libechov, Czech Republic. [email protected].
  2. Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 27721 Libechov, Czech Republic. [email protected].
  3. Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 27721 Libechov, Czech Republic. [email protected].
  4. Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic. [email protected].
  5. Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 27721 Libechov, Czech Republic. [email protected].
  6. Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 27721 Libechov, Czech Republic. [email protected].
  7. Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 27721 Libechov, Czech Republic. [email protected].
  8. Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 12109 Prague, Czech Republic. [email protected].
  9. Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 27721 Libechov, Czech Republic. [email protected].

PMID: 31027284 PMCID: PMC6630935 DOI: 10.3390/proteomes7020017

Abstract

Extracellular vesicles (EVs) are a highly attractive subject of biomedical research as possible carriers of nucleic acid and protein biomarkers. EVs released to body fluids enable indirect access to inner organs by so-called "liquid biopsies". Obtaining a high-quality EV sample with minimum contaminants is crucial for proteomic analyses using LC-MS/MS or other techniques. However, the EV content in various body fluids largely differs, which may hamper subsequent analyses. Here, we present a comparison of extracellular vesicle yields from blood plasma, cerebrospinal fluid, and seminal plasma using an experimental pig model. Pigs are widely used in biomedical research as large animal models with anatomy and physiology close to those of humans and enable studies (e.g., of the nervous system) that are unfeasible in humans. EVs were isolated from body fluids by differential centrifugation followed by ultracentrifugation. EVs were characterized according to protein yields and to the quality of the isolated vesicles (e.g., size distribution, morphology, positivity for exosome markers). In our experimental setting, substantial differences in EV amounts were identified among body fluids, with the seminal plasma being the richest EV source. The yields of pellet proteins from ultracentrifugation of 1 mL of porcine body fluids may help to estimate body fluid input volumes to obtain sufficient samples for subsequent proteomic analyses.

Keywords: body fluid; cerebrospinal fluid; exosome; extracellular vesicle; pig model; plasma; proteomics; seminal plasma

Conflict of interest statement

The authors declare no conflict of interest.

References

  1. Melanoma Res. 2003 Dec;13(6):543-8 - PubMed
  2. Curr Protoc Cell Biol. 2006 Apr;Chapter 3:Unit 3.22 - PubMed
  3. J Proteomics. 2011 Apr 1;74(4):371-88 - PubMed
  4. J Neurotrauma. 2012 Feb 10;29(3):499-513 - PubMed
  5. J Transl Med. 2012 Jan 05;10:5 - PubMed
  6. Blood Coagul Fibrinolysis. 2013 Mar;24(2):125-32 - PubMed
  7. Theriogenology. 2013 Apr 15;79(7):1071-82 - PubMed
  8. Nat Rev Drug Discov. 2013 May;12(5):347-57 - PubMed
  9. J Proteomics. 2014 Jun 25;106:191-204 - PubMed
  10. J Huntingtons Dis. 2013;2(1):47-68 - PubMed
  11. Alzheimers Dement. 2015 Jun;11(6):600-7.e1 - PubMed
  12. Annu Rev Cell Dev Biol. 2014;30:255-89 - PubMed
  13. Semin Cell Dev Biol. 2015 Apr;40:89-96 - PubMed
  14. J Extracell Vesicles. 2015 May 14;4:27066 - PubMed
  15. Neurology. 2015 Jul 7;85(1):40-7 - PubMed
  16. Hum Reprod Update. 2016 Mar-Apr;22(2):182-93 - PubMed
  17. PLoS One. 2015 Dec 21;10(12):e0145686 - PubMed
  18. Toxicol Pathol. 2016 Apr;44(3):299-314 - PubMed
  19. Int J Mol Sci. 2016 Feb 06;17(2):170 - PubMed
  20. Neurodegener Dis. 2016;16(3-4):245-59 - PubMed
  21. J Clin Invest. 2016 Apr 1;126(4):1152-62 - PubMed
  22. Front Biosci (Landmark Ed). 2016 Jun 01;21:1464-73 - PubMed
  23. J Proteomics. 2016 Jun 16;142:15-23 - PubMed
  24. Crit Rev Clin Lab Sci. 2016 Dec;53(6):379-95 - PubMed
  25. Sci Rep. 2016 Aug 09;6:30386 - PubMed
  26. Oncotarget. 2016 Sep 13;7(37):58832-58847 - PubMed
  27. J Immunol Methods. 2016 Nov;438:11-20 - PubMed
  28. Neurosci Bull. 2017 Jun;33(3):331-338 - PubMed
  29. Cancers (Basel). 2017 Jan 12;9(1):null - PubMed
  30. Front Neurosci. 2017 Feb 27;11:82 - PubMed
  31. J Neuroimmunol. 2017 May 15;306:1-10 - PubMed
  32. Circ Res. 2017 May 12;120(10):1632-1648 - PubMed
  33. Prostate. 2017 May;77(13):1335-1343 - PubMed
  34. Mol Cancer. 2017 Aug 29;16(1):145 - PubMed
  35. Expert Rev Mol Diagn. 2017 Oct;17(10):943-947 - PubMed
  36. J Anim Sci. 2017 Sep;95(9):3893-3904 - PubMed
  37. Expert Rev Proteomics. 2017 Dec;14(12):1073-1090 - PubMed
  38. Handb Clin Neurol. 2017;146:139-169 - PubMed
  39. Mol Neurobiol. 2018 Jul;55(7):6112-6128 - PubMed
  40. J Proteome Res. 2018 Mar 2;17(3):1065-1076 - PubMed
  41. Dis Model Mech. 2018 Jan 22;11(1): - PubMed
  42. Transl Stroke Res. 2019 Jun;10(3):241-249 - PubMed
  43. Neurobiol Aging. 2019 Feb;74:15-20 - PubMed
  44. Front Neurosci. 2018 Nov 06;12:811 - PubMed
  45. Biochim Biophys Acta Rev Cancer. 2019 Jan;1871(1):109-116 - PubMed
  46. J Cell Physiol. 2019 Aug;234(8):12226-12236 - PubMed
  47. Adv Drug Deliv Rev. 2019 Jan 1;138:247-258 - PubMed
  48. Nat Cell Biol. 2019 Jan;21(1):9-17 - PubMed
  49. Int J Mol Sci. 2019 Jan 09;20(2):null - PubMed
  50. J Extracell Vesicles. 2018 Nov 23;7(1):1535750 - PubMed
  51. Int J Mol Sci. 2019 Jan 20;20(2):null - PubMed
  52. Prog Neurobiol. 2019 Apr;175:96-106 - PubMed

Publication Types

Grant support