Display options
Share it on

Front Oncol. 2019 Apr 02;9:201. doi: 10.3389/fonc.2019.00201. eCollection 2019.

Cross-Polarization Optical Coherence Tomography for Brain Tumor Imaging.

Frontiers in oncology

Konstantin S Yashin, Elena B Kiseleva, Ekaterina V Gubarkova, Alexander A Moiseev, Sergey S Kuznetsov, Pavel A Shilyagin, Grigory V Gelikonov, Igor A Medyanik, Leonid Ya Kravets, Alexander A Potapov, Elena V Zagaynova, Natalia D Gladkova

Affiliations

  1. Microneurosurgery Group, University Clinic, Privolzhsky Research Medical University, Nizhny Novgorod, Russia.
  2. Laboratory of Optical Coherence Tomography, Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia.
  3. Laboratory of High-Sensitivity Optical Measurements, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia.
  4. Department of Anatomical Pathology, Privolzhsky Research Medical University, Nizhny Novgorod, Russia.
  5. Federal State Autonomous Institution "N.N. Burdenko National Scientific and Practical Center for Neurosurgery" of the Ministry of Healthcare of the Russian Federation, Moscow, Russia.
  6. Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia.

PMID: 31001471 PMCID: PMC6455095 DOI: 10.3389/fonc.2019.00201

Abstract

This paper considers valuable visual assessment criteria for distinguishing between tumorous and non-tumorous tissues, intraoperatively, using cross-polarization OCT (CP OCT)-OCT with a functional extension, that enables detection of the polarization properties of the tissues in addition to their conventional light scattering.

Keywords: cross-polarization optical coherence tomography (CP OCT); glioblastoma; imaging assessment; intraoperative imaging; malignant brain tumors

References

  1. Lasers Surg Med. 2006 Jul;38(6):588-97 - PubMed
  2. Opt Lett. 1998 Jul 1;23(13):1060-2 - PubMed
  3. Neurosurgery. 2008 Apr;62(4):753-64; discussion 264-6 - PubMed
  4. Acta Neurochir (Wien). 2009 May;151(5):507-17; discussion 517 - PubMed
  5. Neuroimaging Clin N Am. 2009 Nov;19(4):647-56 - PubMed
  6. Bull Cancer. 2010 Jan;97(1):17-36 - PubMed
  7. Opt Express. 2011 Dec 19;19(27):26283-94 - PubMed
  8. J Biophotonics. 2013 Apr;6(4):321-9 - PubMed
  9. Zh Vopr Neirokhir Im N N Burdenko. 2012;76(5):3-11; discussion 12 - PubMed
  10. Neuroimage. 2014 Jan 1;84:1007-17 - PubMed
  11. Neuroimage. 2014 Oct 15;100:395-404 - PubMed
  12. Neurophotonics. 2014 Oct;1(2):025004 - PubMed
  13. Sci Transl Med. 2015 Jun 17;7(292):292ra100 - PubMed
  14. Neurosurgery. 2015 Nov;77(5):663-73 - PubMed
  15. Zh Vopr Neirokhir Im N N Burdenko. 2015;79(5):91-101 - PubMed
  16. J Biophotonics. 2016 Oct;9(10):1009-1020 - PubMed
  17. Neurosurg Focus. 2016 Mar;40(3):E3 - PubMed
  18. Neurosurg Focus. 2016 Mar;40(3):E8 - PubMed
  19. Opt Lett. 2016 May 15;41(10):2213-6 - PubMed
  20. Photodiagnosis Photodyn Ther. 2016 Dec;16:35-43 - PubMed
  21. Sci Rep. 2017 Mar 22;7:44909 - PubMed
  22. Biomed Opt Express. 2017 Feb 24;8(3):1838-1873 - PubMed
  23. Zh Vopr Neirokhir Im N N Burdenko. 2017;81(3):107-115 - PubMed
  24. Cochrane Database Syst Rev. 2018 Jan 22;1:CD012788 - PubMed
  25. Semin Oncol. 1994 Apr;21(2):172-85 - PubMed
  26. Neurosurgery. 1998 Oct;43(4):834-41 - PubMed

Publication Types