Display options
Share it on

Front Physiol. 2019 Apr 12;10:380. doi: 10.3389/fphys.2019.00380. eCollection 2019.

Computational Modeling of Glucose Uptake in the Enterocyte.

Frontiers in physiology

Nima Afshar, Soroush Safaei, David P Nickerson, Peter J Hunter, Vinod Suresh

Affiliations

  1. Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
  2. Department of Engineering Science, University of Auckland, Auckland, New Zealand.

PMID: 31031632 PMCID: PMC6473069 DOI: 10.3389/fphys.2019.00380

Abstract

Absorption of glucose across the epithelial cells of the small intestine is a key process in human nutrition and initiates signaling cascades that regulate metabolic homeostasis. Validated and predictive mathematical models of glucose transport in intestinal epithelial cells are essential for interpreting experimental data, generating hypotheses, and understanding the contributions of and interactions between transport pathways. Here we report on the development of such a model that, in contrast to existing models, incorporates mechanistic descriptions of all relevant transport proteins and is implemented in the CellML framework. The model is validated against experimental and simulation data from the literature. It is then used to elucidate the relative contributions of the sodium-glucose cotransporter (SGLT1) and the glucose transporter type 2 (GLUT2) proteins in published measurements of glucose absorption from human intestinal epithelial cell lines. The model predicts that the contribution of SGLT1 dominates at low extracellular glucose concentrations (<20 mM) and short exposure times (<60 s) while the GLUT2 contribution is more significant at high glucose concentrations and long durations. Implementation in CellML permitted a modular structure in which the model was composed by reusing existing models of the individual transporters. The final structure also permits transparent changes of the model components and parameter values in order to facilitate model reuse, extension, and customization (for example, to simplify, or add complexity to specific transporter/pathway models, or reuse the model as a component of a larger framework) and carry out parameter sensitivity studies.

Keywords: CellML; GLUT2; OpenCOR; SGLT1; computational modeling; glucose uptake

References

  1. Jpn J Physiol. 1976;26(4):427-40 - PubMed
  2. Am J Physiol Renal Physiol. 2000 Jul;279(1):F24-45 - PubMed
  3. Biochem J. 2000 Aug 15;350 Pt 1:155-62 - PubMed
  4. J Auton Pharmacol. 2000 Aug;20(4):207-19 - PubMed
  5. Am J Physiol Gastrointest Liver Physiol. 2002 Feb;282(2):G241-8 - PubMed
  6. Nat Rev Mol Cell Biol. 2003 Mar;4(3):237-43 - PubMed
  7. J Membr Biol. 1992 Jan;125(1):63-79 - PubMed
  8. Am J Physiol Regul Integr Comp Physiol. 2005 Mar;288(3):R685-91 - PubMed
  9. Diabetes. 2005 Oct;54(10):3056-62 - PubMed
  10. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):552-6 - PubMed
  11. PLoS Comput Biol. 2009 Jan;5(1):e1000272 - PubMed
  12. Am J Physiol. 1991 Oct;261(4 Pt 1):G585-91 - PubMed
  13. J Theor Biol. 2010 Oct 21;266(4):625-40 - PubMed
  14. Bioinformatics. 2011 Mar 1;27(5):743-4 - PubMed
  15. Surgery. 2011 May;149(5):601-5 - PubMed
  16. Surgery. 2012 Jan;151(1):13-25 - PubMed
  17. Diabetes. 2012 Jan;61(1):187-96 - PubMed
  18. Diabetes. 2012 Jun;61(6):e4; author reply e5 - PubMed
  19. PLoS Comput Biol. 2012;8(6):e1002577 - PubMed
  20. Math Biosci. 2013 Aug;244(2):69-81 - PubMed
  21. Bioessays. 2013 Dec;35(12):1050-5 - PubMed
  22. PLoS One. 2014 Feb 26;9(2):e89977 - PubMed
  23. Am J Physiol Cell Physiol. 2014 Aug 15;307(4):C320-37 - PubMed
  24. Front Bioeng Biotechnol. 2015 Jan 05;2:79 - PubMed
  25. Am J Physiol Renal Physiol. 2015 May 15;308(10):F1098-118 - PubMed
  26. Front Physiol. 2015 Feb 06;6:26 - PubMed
  27. PLoS Comput Biol. 2015 Dec 02;11(12):e1004600 - PubMed
  28. Am J Physiol Gastrointest Liver Physiol. 2017 Feb 1;312(2):G153-G163 - PubMed
  29. Biochim Biophys Acta. 1987 Jul 23;901(2):265-72 - PubMed
  30. Am J Physiol. 1973 Feb;224(2):328-37 - PubMed
  31. Am J Physiol. 1973 Aug;225(2):467-75 - PubMed
  32. J Exp Zool. 1971 Apr;176(4):487-95 - PubMed
  33. J Gen Physiol. 1971 Jun;57(6):639-63 - PubMed
  34. J Ultrastruct Res. 1981 Jul;76(1):1-14 - PubMed
  35. J Gen Physiol. 1995 May;105(5):617-41 - PubMed
  36. J Clin Invest. 1994 Feb;93(2):578-85 - PubMed
  37. Virchows Arch A Pathol Anat Histopathol. 1993;422(6):459-66 - PubMed
  38. Biochem Soc Trans. 1997 Aug;25(3):479S - PubMed
  39. Nat Genet. 1998 Jul;19(3):282-5 - PubMed
  40. J Gen Physiol. 1976 Oct;68(4):441-63 - PubMed

Publication Types