Display options
Share it on

Front Plant Sci. 2019 Apr 12;10:446. doi: 10.3389/fpls.2019.00446. eCollection 2019.

PPR Protein BFA2 Is Essential for the Accumulation of the .

Frontiers in plant science

Lin Zhang, Wen Zhou, Liping Che, Jean-David Rochaix, Congming Lu, Wenjing Li, Lianwei Peng

Affiliations

  1. Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China.
  2. State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China.
  3. Departments of Molecular Biology and Plant Biology, University of Geneva, Geneva, Switzerland.
  4. College of Life Sciences, Langfang Normal University, Langfang, China.

PMID: 31031784 PMCID: PMC6474325 DOI: 10.3389/fpls.2019.00446

Abstract

As a fascinating and complicated nanomotor, chloroplast ATP synthase comprises nine subunits encoded by both the nuclear and plastid genomes. Because of its uneven subunit stoichiometry, biogenesis of ATP synthase and expression of plastid-encoded ATP synthase genes requires assistance by nucleus-encoded factors involved in transcriptional, post-transcriptional, and translational steps. In this study, we report a P-class pentatricopeptide repeat (PPR) protein BFA2 (Biogenesis Factor required for ATP synthase 2) that is essential for accumulation of the dicistronic

Keywords: PPR protein; chloroplast ATP synthase; gene expression; photosynthesis; stability

References

  1. Plant Cell. 1999 Sep;11(9):1709-16 - PubMed
  2. Trends Biochem Sci. 2000 Feb;25(2):46-7 - PubMed
  3. Biochemistry. 2001 Feb 6;40(5):1226-37 - PubMed
  4. RNA. 2001 Sep;7(9):1227-38 - PubMed
  5. Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12246-51 - PubMed
  6. Plant Cell. 2007 Aug;19(8):2606-23 - PubMed
  7. Nucleic Acids Res. 2008 Sep;36(16):5152-65 - PubMed
  8. Trends Plant Sci. 2008 Dec;13(12):663-70 - PubMed
  9. Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4537-42 - PubMed
  10. EMBO J. 2009 Jul 22;28(14):2042-52 - PubMed
  11. Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3245-50 - PubMed
  12. Annu Rev Plant Biol. 2010;61:125-55 - PubMed
  13. Proc Natl Acad Sci U S A. 2011 Jan 4;108(1):415-20 - PubMed
  14. Plant Cell. 2011 Jan;23(1):304-21 - PubMed
  15. Plant Physiol. 2011 Apr;155(4):1520-32 - PubMed
  16. Plant J. 2011 Jul;67(2):318-27 - PubMed
  17. Plant J. 2011 Sep;67(6):1055-66 - PubMed
  18. Nucleic Acids Res. 2012 Apr;40(7):3106-16 - PubMed
  19. Nucleic Acids Res. 2012 Apr;40(7):3092-105 - PubMed
  20. Plant Mol Biol. 2012 Jun;79(3):259-72 - PubMed
  21. Plant J. 2012 Nov;72(4):547-58 - PubMed
  22. PLoS Genet. 2012;8(8):e1002910 - PubMed
  23. J Plant Res. 2013 May;126(3):403-14 - PubMed
  24. PLoS One. 2013 Nov 04;8(11):e78265 - PubMed
  25. Annu Rev Plant Biol. 2014;65:415-42 - PubMed
  26. Plant Physiol. 2014 May;165(1):207-26 - PubMed
  27. Biochim Biophys Acta. 2015 Sep;1847(9):779-85 - PubMed
  28. Plant J. 2015 Mar;81(5):661-9 - PubMed
  29. Biochim Biophys Acta. 2015 Sep;1847(9):849-60 - PubMed
  30. PLoS One. 2015 Apr 02;10(4):e0121658 - PubMed
  31. Mol Plant. 2016 Jun 6;9(6):885-99 - PubMed
  32. Plant Physiol. 2016 Jun;171(2):1291-306 - PubMed
  33. Proc Natl Acad Sci U S A. 2017 Feb 21;114(8):E1554-E1563 - PubMed
  34. Science. 2018 May 11;360(6389): - PubMed
  35. Plant Cell. 2018 Aug;30(8):1770-1788 - PubMed
  36. Plant Physiol. 2019 Jan;179(1):195-208 - PubMed

Publication Types