Display options
Share it on

Stem Cells Int. 2019 Apr 01;2019:7627148. doi: 10.1155/2019/7627148. eCollection 2019.

Neuronal Transdifferentiation Potential of Human Mesenchymal Stem Cells from Neonatal and Adult Sources by a Small Molecule Cocktail.

Stem cells international

Lorena V Cortés-Medina, Herminia Pasantes-Morales, Alejandro Aguilera-Castrejon, Arturo Picones, Cesar O Lara-Figueroa, Enoch Luis, Juan Jose Montesinos, Victor A Cortés-Morales, M P De la Rosa Ruiz, Erika Hernández-Estévez, Laura C Bonifaz, Marco Antonio Alvarez-Perez, Gerardo Ramos-Mandujano

Affiliations

  1. División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
  2. Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
  3. Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
  4. Cátedras CONACyT Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
  5. Mesenchymal Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS, Mexico City 06720, Mexico.
  6. Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, IMSS, Mexico City 06720, Mexico.
  7. Tissue Bioengineering Laboratory, Division of Graduate Studies and Research of the Faculty of Dentistry, UNAM, Mexico City 04510, Mexico.

PMID: 31065279 PMCID: PMC6466843 DOI: 10.1155/2019/7627148

Abstract

Human mesenchymal stem cells (MSCs) are good candidates for brain cell replacement strategies and have already been used as adjuvant treatments in neurological disorders. MSCs can be obtained from many different sources, and the present study compares the potential of neuronal transdifferentiation in MSCs from adult and neonatal sources (Wharton's jelly (WhJ), dental pulp (DP), periodontal ligament (PDL), gingival tissue (GT), dermis (SK), placenta (PLAC), and umbilical cord blood (UCB)) with a protocol previously tested in bone marrow- (BM-) MSCs consisting of a cocktail of six small molecules: I-BET151, CHIR99021, forskolin, RepSox, Y-27632, and dbcAMP (ICFRYA). Neuronal morphology and the presence of cells positive for neuronal markers (TUJ1 and MAP2) were considered attributes of neuronal induction. The ICFRYA cocktail did not induce neuronal features in WhJ-MSCs, and these features were only partial in the MSCs from dental tissues, SK-MSCs, and PLAC-MSCs. The best response was found in UCB-MSCs, which was comparable to the response of BM-MSCs. The addition of neurotrophic factors to the ICFRYA cocktail significantly increased the number of cells with complex neuron-like morphology and increased the number of cells positive for mature neuronal markers in BM- and UCB-MSCs. The neuronal cells generated from UCB-MSCs and BM-MSCs showed increased reactivity of the neuronal genes TUJ1, MAP2, NF-H, NCAM, ND1, TAU, ENO2, GABA, and NeuN as well as down- and upregulation of MSC and neuronal genes, respectively. The present study showed marked differences between the MSCs from different sources in response to the transdifferentiation protocol used here. These results may contribute to identifying the best source of MSCs for potential cell replacement therapies.

References

  1. Nucleic Acids Res. 2001 May 1;29(9):e45 - PubMed
  2. Dev Biol. 2004 Oct 15;274(2):233-44 - PubMed
  3. Nat Rev Neurosci. 2006 May;7(5):395-406 - PubMed
  4. Ann N Y Acad Sci. 2006 May;1067:436-42 - PubMed
  5. Cytotherapy. 2006;8(4):315-7 - PubMed
  6. Stem Cells. 2007 Nov;25(11):2739-49 - PubMed
  7. Cell Tissue Res. 2008 Dec;334(3):423-33 - PubMed
  8. Cytotherapy. 2009;11(2):163-76 - PubMed
  9. Mol Psychiatry. 2010 Dec;15(12):1164-75 - PubMed
  10. Annu Rev Biomed Eng. 2010 Aug 15;12:87-117 - PubMed
  11. Cell Commun Signal. 2011 May 14;9:12 - PubMed
  12. World J Stem Cells. 2010 Aug 26;2(4):67-80 - PubMed
  13. Cell Stem Cell. 2011 Dec 2;9(6):517-25 - PubMed
  14. Cell Tissue Res. 2012 Jun;348(3):379-96 - PubMed
  15. J Cell Sci. 2012 Dec 1;125(Pt 23):5609-20 - PubMed
  16. Muscles Ligaments Tendons J. 2012 Oct 16;2(3):154-62 - PubMed
  17. Mol Biosyst. 2013 Nov;9(11):2741-63 - PubMed
  18. ACS Chem Biol. 2014 Jan 17;9(1):80-95 - PubMed
  19. Elife. 2014 Sep 25;3:e03696 - PubMed
  20. Cell Cycle. 2015;14(8):1188-96 - PubMed
  21. World J Stem Cells. 2015 Mar 26;7(2):502-11 - PubMed
  22. Cell Stem Cell. 2015 Jul 2;17(1):11-22 - PubMed
  23. An Acad Bras Cienc. 2015 Aug;87(2 Suppl):1435-49 - PubMed
  24. Cell Stem Cell. 2015 Aug 6;17(2):127-9 - PubMed
  25. Cell Stem Cell. 2015 Aug 6;17(2):195-203 - PubMed
  26. Cell Stem Cell. 2015 Aug 6;17(2):204-12 - PubMed
  27. Nat Neurosci. 2015 Oct;18(10):1464-73 - PubMed
  28. Cell Stem Cell. 2015 Dec 3;17(6):735-747 - PubMed
  29. Stem Cell Res Ther. 2015 Dec 01;6:234 - PubMed
  30. Cell Stem Cell. 2016 Feb 4;18(2):174-88 - PubMed
  31. Nat Rev Mol Cell Biol. 2016 Mar;17(3):183-93 - PubMed
  32. Mol Brain. 2016 Apr 21;9:43 - PubMed
  33. Stem Cell Reports. 2016 Jun 14;6(6):897-913 - PubMed
  34. Stem Cell Res. 2016 Sep;17(2):212-221 - PubMed
  35. Neurochem Res. 2017 Feb;42(2):415-427 - PubMed
  36. Int J Mol Sci. 2016 Nov 07;17(11): - PubMed
  37. Stem Cell Reports. 2017 Mar 14;8(3):538-547 - PubMed
  38. Mol Cell. 2017 Apr 6;66(1):102-116.e7 - PubMed
  39. Dev Reprod. 2017 Mar;21(1):1-10 - PubMed
  40. Ginekol Pol. 2017;88(4):191-197 - PubMed
  41. Stem Cells. 2017 Aug;35(8):1867-1880 - PubMed
  42. Cell Mol Life Sci. 2017 Oct;74(19):3553-3575 - PubMed
  43. Chem Soc Rev. 2017 Oct 16;46(20):6241-6254 - PubMed
  44. Trends Mol Med. 2018 Sep;24(9):805-820 - PubMed

Publication Types