Display options
Share it on

Transl Oncol. 2019 Jul;12(7):951-958. doi: 10.1016/j.tranon.2019.04.001. Epub 2019 May 13.

A Three-dimensional Ex Vivo Viability Assay Reveals a Strong Correlation Between Response to Targeted Inhibitors and Mutation Status in Melanoma Lymph Node Metastases.

Translational oncology

Vivi Ann Flørenes, Karine Flem-Karlsen, Erin McFadden, Inger Riise Bergheim, Vigdis Nygaard, Vegard Nygård, Inger Nina Farstad, Geir Frode Øy, Elisabeth Emilsen, Karianne Giller-Fleten, Anne Hansen Ree, Kjersti Flatmark, Hans Petter Gullestad, Robert Hermann, Truls Ryder, Patrik Wernhoff, Gunhild Mari Mælandsmo

Affiliations

  1. Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway.
  2. Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway.
  3. Department of Cancer Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway.
  4. Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway.
  5. Department of Core Facilities, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway.
  6. Department of Oncology, Akershus University Hospital, N-1478 Lørenskog, Norway; Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway.
  7. Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway; Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; Department of Gastroenterological Surgery, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway.
  8. Department of Plastic and Reconstructive Surgery, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway.
  9. Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; Institute of Medical Biology, Faculty of Health Sciences, UiT-Arctic University of Norway, Tromsø, Norway. Electronic address: [email protected].

PMID: 31096111 PMCID: PMC6520638 DOI: 10.1016/j.tranon.2019.04.001

Abstract

Although clinical management of melanoma has changed considerably in recent years, intrinsic treatment resistance remains a severe problem and strategies to design personal treatment regimens are highly warranted. We have applied a three-dimensional (3D) ex vivo drug efficacy assay, exposing disaggregated cells from 38 freshly harvested melanoma lymph node metastases and 21 patient derived xenografts (PDXs) to clinical relevant drugs for 7 days, and examined its potential to evaluate therapy response. A strong association between Vemurafenib response and BRAF mutation status was achieved (P < .0001), while enhanced viability was seen in some NRAS mutated tumors. BRAF and NRAS mutated tumors responded comparably to the MEK inhibitor Cobimetinib. Based on the ex vivo results, two tumors diagnosed as BRAF wild-type by routine pathology examinations had to be re-evaluated; one was subsequently found to have a complex V600E mutation, the other a double BRAF mutation (V600E/K601 N). No BRAF inhibitor resistance mechanisms were identified, but PIK3CA and NF1 mutations were identified in two highly responsive tumors. Concordance between ex vivo drug responses using tissue from PDXs and corresponding patient tumors demonstrate that PDX models represent an indefinite source of tumor material that may allow ex vivo evaluation of numerous drugs and combinations, as well as studies of underlying molecular mechanisms. In conclusion, we have established a rapid and low cost ex vivo drug efficacy assay applicable on tumor tissue from patient biopsies. The 3D/spheroid format, limiting the influence from normal adjacent cells and allowing assessment of drug sensitivity to numerous drugs in one week, confirms its potential as a supplement to guide clinical decision, in particular in identifying non-responding patients.

Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.

References

  1. Gynecol Oncol. 2000 May;77(2):258-63 - PubMed
  2. J Clin Oncol. 2005 May 20;23(15):3641-3; author reply 3646-8 - PubMed
  3. Nature. 2006 Jan 19;439(7074):358-62 - PubMed
  4. Oncogene. 2006 Jun 8;25(24):3357-64 - PubMed
  5. Clin Cancer Res. 2008 Jan 1;14(1):230-9 - PubMed
  6. Nat Protoc. 2009;4(3):309-24 - PubMed
  7. J Cancer Res Clin Oncol. 2009 Nov;135(11):1513-20 - PubMed
  8. J Invest Dermatol. 2010 Feb;130(2):618-20 - PubMed
  9. Nucleic Acids Res. 2010 Sep;38(16):e164 - PubMed
  10. Nat Biotechnol. 2011 Jan;29(1):24-6 - PubMed
  11. N Engl J Med. 2011 Jun 30;364(26):2507-16 - PubMed
  12. Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18708-13 - PubMed
  13. PLoS One. 2012;7(1):e29336 - PubMed
  14. Cancer Chemother Pharmacol. 2012 May;69(5):1307-14 - PubMed
  15. Eur J Cancer. 2013 Apr;49(6):1297-304 - PubMed
  16. Trends Biotechnol. 2013 Jun;31(6):347-54 - PubMed
  17. Clin Cancer Res. 2013 Oct 15;19(20):5749-57 - PubMed
  18. J Invest Dermatol. 2014 May;134(5):1468-1470 - PubMed
  19. Mayo Clin Proc. 2014 Apr;89(4):504-19 - PubMed
  20. Cancer Discov. 2014 Sep;4(9):998-1013 - PubMed
  21. Oncotarget. 2014 Oct 30;5(20):9609-18 - PubMed
  22. N Engl J Med. 2014 Nov 13;371(20):1877-88 - PubMed
  23. J Clin Oncol. 2014 Nov 20;32(33):3697-704 - PubMed
  24. Exp Dermatol. 2015 May;24(5):377-80 - PubMed
  25. Nat Rev Cancer. 2015 May;15(5):311-6 - PubMed
  26. Drug Discov Today. 2015 Jul;20(7):848-55 - PubMed
  27. Cancer Control. 2015 Apr;22(2):226-31 - PubMed
  28. EMBO Mol Med. 2015 Jun 23;7(9):1104-18 - PubMed
  29. Cancer Res. 2015 Aug 1;75(15):2963-8 - PubMed
  30. Nat Genet. 2015 Sep;47(9):996-1002 - PubMed
  31. Pharmacogenomics. 2015;16(14):1671-83 - PubMed
  32. Nat Med. 2015 Nov;21(11):1318-25 - PubMed
  33. Clin Cancer Res. 2016 Apr 1;22(7):1592-602 - PubMed
  34. Front Oncol. 2015 Dec 17;5:282 - PubMed
  35. Ther Adv Med Oncol. 2016 Jan;8(1):48-56 - PubMed
  36. J Vis Exp. 2015 Dec 28;(106):e53486 - PubMed
  37. Clin Cancer Res. 2016 Apr 1;22(7):1550-2 - PubMed
  38. Mol Cancer Ther. 2016 Apr;15(4):753-63 - PubMed
  39. Pharmacol Res. 2016 May;107:111-116 - PubMed
  40. Pharmacol Ther. 2016 Jul;163:94-108 - PubMed
  41. Cancer Biol Ther. 2016 Jun 2;17(6):579-91 - PubMed
  42. Int J Oncol. 2016 Jul;49(1):243-52 - PubMed
  43. Eur J Cancer. 2016 Jul;62:76-85 - PubMed
  44. Cell Rep. 2016 Jun 28;16(1):263-277 - PubMed
  45. Ann Transl Med. 2016 Jun;4(12):237 - PubMed
  46. Cell. 2016 Sep 22;167(1):260-274.e22 - PubMed
  47. Oncotarget. 2016 Nov 22;7(47):77163-77174 - PubMed
  48. Biotechnol J. 2017 Jan;12(1): - PubMed
  49. Cancer Metastasis Rev. 2017 Mar;36(1):53-75 - PubMed
  50. SLAS Discov. 2017 Jun;22(5):456-472 - PubMed
  51. Eur J Cancer. 2017 Aug;81:106-115 - PubMed
  52. Methods Mol Biol. 2017;1612:401-416 - PubMed
  53. Clin Cancer Res. 2017 Oct 15;23(20):6203-6214 - PubMed
  54. Cell Chem Biol. 2017 Sep 21;24(9):1092-1100 - PubMed
  55. Nat Rev Cancer. 2017 Sep 15;17(10):632 - PubMed
  56. Transl Oncol. 2017 Dec;10(6):956-975 - PubMed
  57. Cell Rep. 2017 Nov 14;21(7):1936-1952 - PubMed
  58. Cell Rep. 2017 Nov 14;21(7):1953-1967 - PubMed
  59. Exp Dermatol. 2018 May;27(5):578-586 - PubMed
  60. Biosens Bioelectron. 2019 Jan 1;123:185-194 - PubMed
  61. J Hematol Oncol. 2018 Sep 15;11(1):116 - PubMed

Publication Types