Display options
Share it on

J Synchrotron Radiat. 2019 May 01;26:874-886. doi: 10.1107/S160057751900331X. Epub 2019 Apr 15.

Experimental station Bernina at SwissFEL: condensed matter physics on femtosecond time scales investigated by X-ray diffraction and spectroscopic methods.

Journal of synchrotron radiation

Gerhard Ingold, Rafael Abela, Christopher Arrell, Paul Beaud, Pirmin Böhler, Marco Cammarata, Yunpei Deng, Christian Erny, Vincent Esposito, Uwe Flechsig, Rolf Follath, Christoph Hauri, Steven Johnson, Pavle Juranic, Giulia Fulvia Mancini, Roman Mankowsky, Aldo Mozzanica, Roland Alex Oggenfuss, Bruce D Patterson, Luc Patthey, Bill Pedrini, Jochen Rittmann, Leonardo Sala, Matteo Savoini, Cristian Svetina, Thierry Zamofing, Serhane Zerdane, Henrik Till Lemke

Affiliations

  1. SwissFEL, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland.
  2. Institut de Physique de Rennes, Université de Rennes, 35042 Rennes CEDEX, France.
  3. Institute for Quantum Electronics, Eidgenössische Technische Hochschule (ETH) Zürich, CH-8093 Zurich, Switzerland.
  4. Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.

PMID: 31074452 PMCID: PMC6510206 DOI: 10.1107/S160057751900331X

Abstract

The Bernina instrument at the SwissFEL Aramis hard X-ray free-electron laser is designed for studying ultrafast phenomena in condensed matter and material science. Ultrashort pulses from an optical laser system covering a large wavelength range can be used to generate specific non-equilibrium states, whose subsequent temporal evolution can be probed by selective X-ray scattering techniques in the range 2-12 keV. For that purpose, the X-ray beamline is equipped with optical elements which tailor the X-ray beam size and energy, as well as with pulse-to-pulse diagnostics that monitor the X-ray pulse intensity, position, as well as its spectral and temporal properties. The experiments can be performed using multiple interchangeable endstations differing in specialization, diffractometer and X-ray analyser configuration and load capacity for specialized sample environment. After testing the instrument in a series of pilot experiments in 2018, regular user operation begins in 2019.

open access.

Keywords: FEL; X-ray; pump–probe; time-resolved

References

  1. Opt Express. 2002 Oct 21;10(21):1161-6 - PubMed
  2. J Synchrotron Radiat. 2015 May;22(3):503-7 - PubMed
  3. Nat Commun. 2016 May 05;7:11494 - PubMed
  4. Phys Rev Lett. 1988 Sep 5;61(10):1241-1244 - PubMed
  5. Opt Lett. 2017 Feb 15;42(4):663-666 - PubMed
  6. J Synchrotron Radiat. 2013 Jul;20(Pt 4):541-9 - PubMed
  7. Nat Mater. 2016 Jun;15(6):601-5 - PubMed
  8. Opt Express. 2015 Nov 16;23(23):29929-39 - PubMed
  9. Science. 2014 Mar 21;343(6177):1333-6 - PubMed
  10. Science. 2015 Nov 20;350(6263):949-52 - PubMed
  11. J Synchrotron Radiat. 2007 Jul;14(Pt 4):301-12 - PubMed
  12. Opt Express. 2011 Oct 24;19(22):21855-65 - PubMed
  13. Nat Mater. 2015 Oct;14(10):1008-12 - PubMed
  14. Phys Rev Lett. 2016 Jul 29;117(5):056401 - PubMed
  15. J Appl Crystallogr. 2016 May 23;49(Pt 3):968-975 - PubMed
  16. J Synchrotron Radiat. 2014 May;21(Pt 3):466-72 - PubMed
  17. Phys Rev Lett. 2007 Oct 26;99(17):174801 - PubMed
  18. Science. 2013 Jul 5;341(6141):56-9 - PubMed
  19. Opt Express. 2017 Feb 6;25(3):2080-2091 - PubMed
  20. J Synchrotron Radiat. 2009 Nov;16(Pt 6):778-87 - PubMed
  21. Nat Mater. 2014 Jul;13(7):705-11 - PubMed
  22. Rev Sci Instrum. 2011 Feb;82(2):023108 - PubMed
  23. J Synchrotron Radiat. 2016 Sep 1;23(Pt 5):1143-50 - PubMed
  24. Nature. 2016 Feb 25;530(7591):461-4 - PubMed
  25. Nat Mater. 2014 Oct;13(10):923-7 - PubMed
  26. Opt Lett. 2017 Jan 1;42(1):129-131 - PubMed
  27. Proc Natl Acad Sci U S A. 2012 May 8;109(19):7224-9 - PubMed
  28. Phys Rev Lett. 2017 Jun 16;118(24):247601 - PubMed
  29. Nature. 2014 Dec 4;516(7529):71-3 - PubMed
  30. Phys Rev Lett. 2008 Apr 18;100(15):155501 - PubMed
  31. Proc Natl Acad Sci U S A. 2016 Dec 20;113(51):14645-14650 - PubMed
  32. J Synchrotron Radiat. 2018 May 1;25(Pt 3):686-705 - PubMed
  33. Nature. 2018 Mar 1;555(7694):79-82 - PubMed
  34. Nat Mater. 2015 Sep;14(9):883-8 - PubMed
  35. Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2286-9 - PubMed
  36. J Synchrotron Radiat. 2013 Jan;20(Pt 1):74-9 - PubMed
  37. J Synchrotron Radiat. 2018 Mar 1;25(Pt 2):580-591 - PubMed
  38. Phys Rev Lett. 2013 Mar 22;110(12):123902 - PubMed
  39. Phys Rev Lett. 2017 May 12;118(19):197601 - PubMed
  40. Struct Dyn. 2017 May 03;4(5):054301 - PubMed
  41. Nature. 2009 May 21;459(7245):405-9 - PubMed
  42. Nat Methods. 2014 Jul;11(7):734-6 - PubMed
  43. Sci Rep. 2015 May 29;5:10451 - PubMed
  44. Science. 2011 Jan 14;331(6014):189-91 - PubMed
  45. Phys Rev Lett. 2016 Jun 24;116(25):257202 - PubMed
  46. Phys Rev Lett. 2012 Jul 20;109(3):037204 - PubMed
  47. Science. 2013 Apr 26;340(6131):491-5 - PubMed
  48. Science. 2017 Dec 22;358(6370):1589-1593 - PubMed
  49. Phys Rev Lett. 2016 Jul 15;117(3):037201 - PubMed
  50. Phys Rev Lett. 2009 Oct 9;103(15):155702 - PubMed
  51. Acta Crystallogr A. 2010 Mar;66(Pt 2):157-67 - PubMed
  52. Phys Rev Lett. 2012 Apr 27;108(17):177003 - PubMed
  53. Phys Rev Lett. 2012 Jan 20;108(3):037203 - PubMed

Publication Types