Display options
Share it on

Front Zool. 2019 Apr 18;16:11. doi: 10.1186/s12983-019-0311-3. eCollection 2019.

Photoresponsiveness affects life history traits but not oxidative status in a seasonal rodent.

Frontiers in zoology

Anna S Przybylska, Michał S Wojciechowski, Małgorzata Jefimow

Affiliations

  1. 1Department of Vertebrate Zoology, Nicolaus Copernicus University, ul. Lwowska 1, 87-100 Toru?, Poland.
  2. 2Department of Animal Physiology, Nicolaus Copernicus University, ul. Lwowska 1, 87-100 Toru?, Poland.

PMID: 31019542 PMCID: PMC6471882 DOI: 10.1186/s12983-019-0311-3

Abstract

BACKGROUND: Shortening photoperiod triggers seasonal adjustments like cessation of reproduction, molting and heterothermy. However there is a considerable among-individual variation in photoresponsiveness within one population. Although seasonal adjustments are considered beneficial to winter survival, and natural selection should favor the individuals responding to changes in photoperiod (responders), the phenotype non-responding to changes in day length is maintained in population. Assuming the same resource availability for both phenotypes which differ in strategy of winter survival, we hypothesized that they should differ in life history traits. To test this we compared reproductive traits of two extreme phenotypes of Siberian hamster

RESULTS: Prior to reproduction responding individuals were smaller than non-responding ones, but this difference disappeared after reproduction. Responding pairs commenced breeding later than non-responding ones but there was no difference in time interval between consecutive litters. Responders delivered smaller offspring than non-responders and more out of responding individuals built the nest during winter than non-responding ones. Reproduction did not affect future investments in somatic maintenance. Phenotypes did not differ in BMR and oxidative status after reproduction. However, concentration of reactive oxygen metabolites (ROM) was highest in responding males, and biological antioxidant potential (BAP) was higher in males of both phenotypes than in females.

CONCLUSIONS: Delayed breeding in responding Siberian hamsters and high ROM concentration in male responders support our hypothesis that differences in adjustment to winter result in different life history characteristics which may explain coexistence of both phenotypes in a population. We propose that polymorphism in photoresponsiveness may be beneficial in stochastic environment, where environmental conditions differ between winters. We suggest that non-responding phenotype may be particularly beneficial during mild winter, whereas responders would be favored under harsh conditions. Therefore, none of the phenotypes is impaired when compared to the other.

Keywords: Basal metabolic rate; Life history traits; Oxidative stress; Photoresponsiveness; Polymorphism; Reproduction

Conflict of interest statement

All experimental procedures were approved by the Local Committee for Ethics in Animal Research in Bydgoszcz, Poland (decisions nos. 3/2015, 31–33/2015, 35/2015).Not applicableThe authors declare that

References

  1. Proc Soc Exp Biol Med. 2000 Jan;223(1):59-66 - PubMed
  2. Physiol Biochem Zool. 2000 Jan-Feb;73(1):112-21 - PubMed
  3. Horm Behav. 2000 Mar;37(2):116-25 - PubMed
  4. J Biol Rhythms. 2000 Oct;15(5):417-28 - PubMed
  5. Proc Biol Sci. 2001 Mar 22;268(1467):661-6 - PubMed
  6. Q Rev Biol. 2001 Sep;76(3):293-325 - PubMed
  7. Evolution. 2001 Aug;55(8):1600-8 - PubMed
  8. Free Radic Biol Med. 2003 Mar 1;34(5):546-52 - PubMed
  9. Free Radic Biol Med. 1992 Oct;13(4):325-40 - PubMed
  10. Biol Bull. 1950 Oct;99(2):259-71 - PubMed
  11. Biol Reprod. 2004 Sep;71(3):987-92 - PubMed
  12. Proc Biol Sci. 2004 Aug 7;271 Suppl 5:S360-3 - PubMed
  13. J Biol Rhythms. 1992 Summer;7(2):161-73 - PubMed
  14. Endocrine. 2006 Feb;29(1):27-32 - PubMed
  15. Physiol Behav. 2006 Jul 30;88(4-5):309-16 - PubMed
  16. Am J Physiol Regul Integr Comp Physiol. 2007 Jan;292(1):R18-36 - PubMed
  17. Science. 2006 Nov 3;314(5800):825-8 - PubMed
  18. J Exp Biol. 2007 Jan;210(Pt 1):65-74 - PubMed
  19. Philos Trans R Soc Lond B Biol Sci. 2008 Jan 27;363(1490):375-98 - PubMed
  20. Ecol Lett. 2007 Oct;10(10):867-72 - PubMed
  21. J Comp Physiol B. 2008 Mar;178(3):235-47 - PubMed
  22. Ecology. 2008 Sep;89(9):2584-93 - PubMed
  23. Ecol Lett. 2009 Jan;12(1):75-92 - PubMed
  24. Horm Behav. 2009 Mar;55(3):390-7 - PubMed
  25. Naturwissenschaften. 2009 Oct;96(10):1235-40 - PubMed
  26. J Gerontol. 1991 Mar;46(2):B47-53 - PubMed
  27. Proc Biol Sci. 2010 Sep 22;277(1695):2867-74 - PubMed
  28. Proc Biol Sci. 2011 Apr 7;278(1708):1098-106 - PubMed
  29. Proc Biol Sci. 2011 Nov 22;278(1723):3355-63 - PubMed
  30. Comp Biochem Physiol A Mol Integr Physiol. 2011 Dec;160(4):516-23 - PubMed
  31. Biol Lett. 2012 Apr 23;8(2):304-7 - PubMed
  32. Free Radic Biol Med. 2012 Feb 1;52(3):539-555 - PubMed
  33. Aging (Albany NY). 2011 Dec;3(12):1202-5 - PubMed
  34. J Exp Biol. 2012 Jun 1;215(Pt 11):1799-805 - PubMed
  35. Trends Ecol Evol. 2012 Oct;27(10):570-7 - PubMed
  36. Front Zool. 2012 Dec 26;9(1):37 - PubMed
  37. Proc Biol Sci. 2013 Jan 02;280(1753):20122576 - PubMed
  38. Cell Metab. 2013 Jan 8;17(1):10-9 - PubMed
  39. Biol Lett. 2013 Feb 06;9(2):20121095 - PubMed
  40. Biol Reprod. 1990 May-Jun;42(5-6):787-91 - PubMed
  41. Evolution. 2014 Aug;68(8):2306-18 - PubMed
  42. Biol Rev Camb Philos Soc. 2015 Aug;90(3):891-926 - PubMed
  43. Reprod Biol Endocrinol. 2014 Aug 25;12:84 - PubMed
  44. J Biol Rhythms. 1989 Summer;4(2):251-65 - PubMed
  45. J Exp Biol. 2014 Dec 1;217(Pt 23):4237-43 - PubMed
  46. J Exp Biol. 2015 Jan 15;218(Pt 2):249-54 - PubMed
  47. Biol Rev Camb Philos Soc. 2016 Nov;91(4):1134-1148 - PubMed
  48. PLoS One. 2015 Oct 27;10(10):e0141604 - PubMed
  49. J Exp Biol. 2015 Dec;218(Pt 24):3901-10 - PubMed
  50. Physiol Behav. 2016 Feb 1;154:1-7 - PubMed
  51. Ecol Evol. 2015 Nov 17;5(24):5745-57 - PubMed
  52. Biomol Concepts. 2016 Feb;7(1):41-52 - PubMed
  53. Proc Biol Sci. 2016 Apr 27;283(1829): - PubMed
  54. Nat Commun. 2016 Jun 14;7:11854 - PubMed
  55. Physiol Behav. 1989 Mar;45(3):465-9 - PubMed
  56. Heredity (Edinb). 2017 Mar;118(3):221-228 - PubMed
  57. Oecologia. 1992 Mar;89(3):397-406 - PubMed
  58. PLoS One. 2017 Apr 12;12(4):e0175579 - PubMed
  59. J Comp Physiol B. 2017 Jul;187(5-6):889-897 - PubMed
  60. Evolution. 1977 Dec;31(4):882-890 - PubMed
  61. J Exp Biol. 2017 Sep 1;220(Pt 17):3154-3161 - PubMed
  62. J Comp Physiol A. 1989 Jan;164(4):475-81 - PubMed
  63. J Exp Biol. 2018 Apr 6;221(Pt 7): - PubMed
  64. BMC Ecol. 2019 Feb 1;19(1):7 - PubMed
  65. Biol Reprod. 1985 Sep;33(2):418-22 - PubMed
  66. Biol Reprod. 1985 Oct;33(3):596-602 - PubMed
  67. Endocrinology. 1983 Apr;112(4):1398-406 - PubMed
  68. Gen Comp Endocrinol. 1982 Nov;48(3):289-95 - PubMed
  69. Biol Reprod. 1981 May;24(4):778-83 - PubMed
  70. Biol Reprod. 1995 Jul;53(1):116-25 - PubMed
  71. J Exp Zool. 1993 Oct 1;267(2):104-12 - PubMed
  72. Science. 1996 Jul 5;273(5271):59-63 - PubMed
  73. J Biol Rhythms. 1997 Apr;12(2):110-21 - PubMed
  74. J Exp Zool. 1997 Jun 1;278(2):106-14 - PubMed
  75. Physiol Behav. 1997 Dec 31;63(1):41-7 - PubMed
  76. Physiol Behav. 1998 Feb 1;63(3):435-43 - PubMed
  77. Biol Reprod. 1998 Mar;58(3):842-8 - PubMed
  78. Physiol Rev. 1998 Apr;78(2):547-81 - PubMed
  79. Clin Exp Pharmacol Physiol. 1998 Sep;25(9):736-9 - PubMed
  80. Physiol Behav. 1998 Jul;64(5):715-22 - PubMed

Publication Types