Display options
Share it on

J Phys Chem Lett. 2019 Jun 06;10(11):3153-3158. doi: 10.1021/acs.jpclett.9b00848. Epub 2019 May 28.

Role of Valence Band States and Plasmonic Enhancement in Electron-Transfer-Induced Transformation of Nitrothiophenol.

The journal of physical chemistry letters

Robin Schürmann, Kenny Ebel, Christophe Nicolas, Aleksandar R Milosavljević, Ilko Bald

Affiliations

  1. Physical Chemistry, Institute of Chemistry , University of Potsdam , Karl-Liebknecht-Str. 24-25 , 14476 Potsdam-Golm , Germany.
  2. Department of Analytical Chemistry BAM , Federal Institute of Material Research and Testing , Richard-Willstätter-Str. 11 , 12489 Berlin , Germany.
  3. Synchrotron SOLEIL , L'Orme des Merisiers, Saint Aubin, BP 48 , 91192 Gif-sur-Yvette , France.

PMID: 31117676 PMCID: PMC6569622 DOI: 10.1021/acs.jpclett.9b00848

Abstract

Hot-electron-induced reactions are more and more recognized as a critical and ubiquitous reaction in heterogeneous catalysis. However, the kinetics of these reactions is still poorly understood, which is also due to the complexity of plasmonic nanostructures. We determined the reaction rates of the hot-electron-mediated reaction of 4-nitrothiophenol (NTP) on gold nanoparticles (AuNPs) using fractal kinetics as a function of the laser wavelength and compared them with the plasmonic enhancement of the system. The reaction rates can be only partially explained by the plasmonic response of the NPs. Hence, synchrotron X-ray photoelectron spectroscopy (XPS) measurements of isolated NTP-capped AuNP clusters have been performed for the first time. In this way, it was possible to determine the work function and the accessible valence band states of the NP systems. The results show that besides the plasmonic enhancement, the reaction rates are strongly influenced by the local density of the available electronic states of the system.

References

  1. Chemphyschem. 2004 Apr 19;5(4):571-5 - PubMed
  2. Chem Rev. 2006 Oct;106(10):4281-300 - PubMed
  3. J Chem Phys. 2006 Nov 28;125(20):204701 - PubMed
  4. J Phys Chem B. 2007 Jul 5;111(26):7541-9 - PubMed
  5. Science. 1988 Sep 23;241(4873):1620-6 - PubMed
  6. J Am Chem Soc. 2010 Jul 14;132(27):9244-6 - PubMed
  7. Phys Chem Chem Phys. 2012 Mar 28;14(12):4095-100 - PubMed
  8. Chem Phys Lett. 2012 May 21;536:65-67 - PubMed
  9. Nat Nanotechnol. 2012 Sep;7(9):583-6 - PubMed
  10. ACS Nano. 2012 Dec 21;6(12):10622-31 - PubMed
  11. Rev Sci Instrum. 2013 Nov;84(11):113105 - PubMed
  12. J Am Chem Soc. 2014 Feb 5;136(5):1907-21 - PubMed
  13. Angew Chem Int Ed Engl. 2014 May 5;53(19):4756-95 - PubMed
  14. ACS Nano. 2014 Aug 26;8(8):7630-8 - PubMed
  15. Nanoscale. 2014 Aug 7;6(15):8612-6 - PubMed
  16. Chemphyschem. 2015 Feb 23;16(3):547-54 - PubMed
  17. J Phys Chem Lett. 2014 Oct 2;5(19):3399-403 - PubMed
  18. J Am Chem Soc. 2016 Apr 6;138(13):4673-84 - PubMed
  19. J Phys Chem Lett. 2016 Apr 21;7(8):1570-84 - PubMed
  20. ChemCatChem. 2014 Dec;6(12):3342-3346 - PubMed
  21. Nanoscale. 2017 Feb 2;9(5):1951-1955 - PubMed
  22. ACS Nano. 2017 Mar 28;11(3):2886-2893 - PubMed
  23. Nat Commun. 2017 Mar 28;8:14880 - PubMed
  24. Phys Chem Chem Phys. 2017 Dec 6;19(47):32016-32023 - PubMed
  25. Chem Rev. 2018 Mar 28;118(6):2927-2954 - PubMed
  26. Chem Commun (Camb). 2018 Mar 1;54(19):2326-2336 - PubMed
  27. Nano Lett. 2018 Mar 14;18(3):1714-1723 - PubMed
  28. Angew Chem Int Ed Engl. 2018 Jun 18;57(25):7444-7447 - PubMed
  29. ACS Nano. 2018 Jun 26;12(6):5848-5855 - PubMed
  30. J Phys Chem Lett. 2018 Jul 5;9(13):3604-3611 - PubMed
  31. Nat Commun. 2018 Aug 23;9(1):3394 - PubMed
  32. Science. 2018 Oct 5;362(6410):28-29 - PubMed
  33. Science. 2018 Oct 5;362(6410):69-72 - PubMed
  34. Angew Chem Int Ed Engl. 2019 Apr 1;58(15):4800-4808 - PubMed

Publication Types