Display options
Share it on

Biomed Opt Express. 2019 Apr 03;10(5):2213-2226. doi: 10.1364/BOE.10.002213. eCollection 2019 May 01.

Phase-based OCT angiography in diagnostic imaging of pediatric retinoblastoma patients: abnormal blood vessels in post-treatment regression patterns.

Biomedical optics express

Oleg Nadiarnykh, Valentina Davidoiu, Maximilian G O Gräfe, Machteld Bosscha, Annette C Moll, Johannes F de Boer

Affiliations

  1. Department of Physics and Astronomy, VU University, De Boelelaan 1081, Amsterdam, 1081 HV, The Netherlands.
  2. Amsterdam UMC, VU University, Department of Ophthalmology, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands.

PMID: 31143490 PMCID: PMC6524593 DOI: 10.1364/BOE.10.002213

Abstract

Phase-based OCT angiography of retinoblastoma regression patterns with a novel handheld 1050 nm clinical imaging system is demonstrated for the first time in children between 0 and 4 years old under general anesthesia. Angiography is mapped at OCT resolution by flow detection at every pixel with en-face projection from the volume between nerve fiber layer and retinal pigment epithelium. We show a striking difference between blood vasculature of healthy retina, and retinoblastoma regression patterns after chemotherapy, as well as varying complexity of abnormal vasculature in regression patterns types 2, 3, and 4. We demonstrate abnormal, tortuous and prominent vasculature in type 3 regression patterns having the highest risk of tumor recurrences and a lower probability to reduction into flat scars. The ability to visualize 3-D angiography might offer new insights in understanding of retinoblastoma development and its response to therapy.

Conflict of interest statement

JFB (P): JFB: Heidelberg Engineering Gmbh (F) ON: Heidelberg Engineering Gmbh (F) MGO: Heidelberg Engineering Gmbh (F)

References

  1. Opt Lett. 2007 Mar 15;32(6):626-8 - PubMed
  2. Opt Lett. 2000 Jan 15;25(2):114-6 - PubMed
  3. Opt Lett. 2000 Oct 1;25(19):1448-50 - PubMed
  4. J Biomed Opt. 2008 Nov-Dec;13(6):064003 - PubMed
  5. Arch Ophthalmol. 2009 Mar;127(3):282-90 - PubMed
  6. Opt Express. 2003 Nov 17;11(23):3116-21 - PubMed
  7. Opt Express. 2005 May 30;13(11):3931-44 - PubMed
  8. Opt Express. 2005 Jul 11;13(14):5483-93 - PubMed
  9. Opt Express. 2005 Sep 19;13(19):7449-57 - PubMed
  10. Opt Express. 2005 Nov 14;13(23):9480-91 - PubMed
  11. Opt Express. 2006 May 15;14(10):4403-11 - PubMed
  12. Opt Express. 2006 Aug 21;14(17):7821-40 - PubMed
  13. Opt Express. 2007 Sep 3;15(18):11402-12 - PubMed
  14. Invest Ophthalmol Vis Sci. 2010 May;51(5):2678-85 - PubMed
  15. Opt Express. 2010 Aug 30;18(18):19413-28 - PubMed
  16. Biomed Opt Express. 2010 Oct 01;1(4):1047-1058 - PubMed
  17. Arch Ophthalmol. 2011 Jun;129(6):727-30 - PubMed
  18. Zhonghua Yan Ke Za Zhi. 2012 Jul;48(7):625-30 - PubMed
  19. Pediatr Blood Cancer. 2013 Apr;60(4):599-604 - PubMed
  20. Opt Express. 2012 Aug 27;20(18):20516-34 - PubMed
  21. IEEE Trans Med Imaging. 2013 Mar;32(3):531-43 - PubMed
  22. Biomed Opt Express. 2013 Jan 1;4(1):51-65 - PubMed
  23. Invest Ophthalmol Vis Sci. 2013 Jan 28;54(1):771-7 - PubMed
  24. Biomed Opt Express. 2013 Dec 20;5(1):293-311 - PubMed
  25. Indian J Ophthalmol. 2015 Feb;63(2):128-32 - PubMed
  26. Med Image Anal. 2015 Dec;26(1):146-58 - PubMed
  27. J Biomed Opt. 2015 Nov;20(11):116009 - PubMed
  28. Indian J Ophthalmol. 2016 Jul;64(7):524-9 - PubMed
  29. Ophthalmology. 2017 Jun;124(6):859-872 - PubMed
  30. Br J Ophthalmol. 1997 Jul;81(7):559-62 - PubMed

Publication Types