Display options
Share it on

Ecol Evol. 2019 May 09;9(11):6665-6677. doi: 10.1002/ece3.5246. eCollection 2019 Jun.

Interbreeding between local and translocated populations of a cleaner fish in an experimental mesocosm predicts risk of disrupted local adaptation.

Ecology and evolution

Enrique Blanco Gonzalez, Sigurd H Espeland, Sissel Jentoft, Michael M Hansen, Joana I Robalo, Nils C Stenseth, Per Erik Jorde

Affiliations

  1. Department of Natural Sciences University of Agder Kristiansand Norway.
  2. Centre for Coastal Research University of Agder Kristiansand Norway.
  3. Norwegian College of Fishery Science UiT The Arctic University of Norway Tromsø Norway.
  4. Institute of Marine Research Flødevigen Norway.
  5. Centre for Ecological and Evolutionary Synthesis, Department of Biosciences University of Oslo Oslo Norway.
  6. Department of Bioscience Aarhus University Aarhus C Denmark.
  7. MARE - Marine and Environmental Sciences Centre ISPA Instituto Universitário de Ciências Psicológicas, Sociais e da Vida Lisboa Portugal.

PMID: 31236251 PMCID: PMC6580302 DOI: 10.1002/ece3.5246

Abstract

Translocation of organisms within or outside its native range carries the risk of modifying the community of the recipient ecosystems and induces gene flow between locally adapted populations or closely related species. In this study, we evaluated the genetic consequences of large-scale translocation of cleaner wrasses that has become a common practice within the salmon aquaculture industry in northern Europe to combat sea lice infestation. A major concern with this practice is the potential for hybridization of escaped organisms with the local, recipient wrasse population, and thus potentially introduce exogenous alleles and breaking down coadapted gene complexes in local populations. We investigated the potential threat for such genetic introgressions in a large seminatural mesocosm basin. The experimental setting represented a simulated translocation of corkwing wrasse (

Keywords: Symphodus melops; corkwing wrasse; mating behavior; microsatellites; parentage assignment; reproductive fitness

Conflict of interest statement

None declared.

References

  1. Anim Genet. 2002 Feb;33(1):33-41 - PubMed
  2. Mol Ecol. 2002 Jun;11(6):1029-37 - PubMed
  3. Philos Trans R Soc Lond B Biol Sci. 2006 Feb 28;361(1466):319-34 - PubMed
  4. Mol Ecol. 2007 Mar;16(5):953-66 - PubMed
  5. Mol Ecol. 2007 Mar;16(5):1099-106 - PubMed
  6. Mol Ecol. 2007 Jun;16(12):2407-21 - PubMed
  7. Science. 2007 Oct 5;318(5847):100-3 - PubMed
  8. Biol Lett. 2009 Oct 23;5(5):621-4 - PubMed
  9. Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):13860-4 - PubMed
  10. Trends Ecol Evol. 2010 Sep;25(9):520-9 - PubMed
  11. Ann Rev Mar Sci. 2010;2:367-93 - PubMed
  12. Trends Ecol Evol. 2011 May;26(5):216-21 - PubMed
  13. Mol Ecol Resour. 2008 Jan;8(1):103-6 - PubMed
  14. Ecol Evol. 2012 Jan;2(1):153-64 - PubMed
  15. Bioinformatics. 2012 Oct 1;28(19):2537-9 - PubMed
  16. Mol Ecol. 2012 Nov;21(21):5236-50 - PubMed
  17. PLoS One. 2013 Jun 26;8(6):e67492 - PubMed
  18. Evolution. 2013 Nov;67(11):3243-57 - PubMed
  19. J Fish Biol. 2014 Jun;84(6):1842-62 - PubMed
  20. PLoS One. 2014 Aug 18;9(8):e105377 - PubMed
  21. Prev Vet Med. 2014 Dec 1;117(3-4):469-77 - PubMed
  22. Evol Appl. 2014 Sep;7(8):883-96 - PubMed
  23. Evol Appl. 2014 Nov;7(9):1094-106 - PubMed
  24. PLoS One. 2015 May 20;10(5):e0125743 - PubMed
  25. Glob Chang Biol. 2016 Mar;22(3):1155-67 - PubMed
  26. J Phycol. 2016 Feb;52(1):141-7 - PubMed
  27. Am Nat. 2016 Aug;188(2):264-71 - PubMed
  28. PLoS One. 2016 Oct 5;11(10):e0163052 - PubMed
  29. R Soc Open Sci. 2017 Feb 15;4(2):160773 - PubMed
  30. Evolution. 1984 Nov;38(6):1358-1370 - PubMed
  31. R Soc Open Sci. 2018 Mar 21;5(3):171752 - PubMed
  32. J Fish Biol. 2018 Aug;93(2):324-333 - PubMed
  33. Ann Hum Genet. 1983 Jul;47(3):253-9 - PubMed

Publication Types