Display options
Share it on

NPJ Regen Med. 2019 May 21;4:11. doi: 10.1038/s41536-019-0072-9. eCollection 2019.

Implantable hyaluronic acid-deferoxamine conjugate prevents nonunions through stimulation of neovascularization.

NPJ Regenerative medicine

Alexis Donneys, Qiuhong Yang, Marcus Laird Forrest, Noah S Nelson, Ti Zhang, Russell Ettinger, Kavitha Ranganathan, Alicia Snider, Sagar S Deshpande, Mark S Cohen, Steven R Buchman

Affiliations

  1. 1Craniofacial Research Laboratory, Plastic Surgery Section, University of Michigan, Ann Arbor, MI 48109 USA.
  2. 2Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047 USA.
  3. 3Department of Surgery, University of Michigan, Ann Arbor, MI 48109 USA.

PMID: 31123600 PMCID: PMC6529413 DOI: 10.1038/s41536-019-0072-9

Abstract

Approximately 6.3 million fractures occur in the U.S. annually, with 5-10% resulting in debilitating nonunions. A major limitation to achieving successful bony union is impaired neovascularization. To augment fracture healing, we designed an implantable drug delivery technology containing the angiogenic stimulant, deferoxamine (DFO). DFO activates new blood vessel formation through iron chelation and upregulation of the HIF-1α pathway. However, due to its short half-life and rapid clearance, maintaining DFO at the callus site during peak fracture angiogenesis has remained challenging. To overcome these limitations, we composed an implantable formulation of DFO conjugated to hyaluronic acid (HA). This compound immobilizes DFO within the fracture callus throughout the angiogenic window, making it a high-capacity iron sponge that amplifies blood vessel formation and prevents nonunions. We investigated implanted HA-DFO's capacity to facilitate fracture healing in the irradiated rat mandible, a model whereby nonunions routinely develop secondary to obliteration of vascularity. HA-DFO implantation significantly improved radiomorphometrics and metrics of biomechanical strength. In addition, HA-DFO treated mandibles exhibited a remarkable 91% bone union rate, representing a 3.5-fold improvement over non-treated/irradiated controls (20% bone union rate). Collectively, our work proposes a unique methodology for the targeted delivery of DFO to fracture sites in order to facilitate neovascularization. If these findings are successfully translated into clinical practice, millions of patients will benefit from the prevention of nonunions.

Keywords: Fracture repair; Regenerative medicine; Translational research

Conflict of interest statement

Competing interestsS.R.B., M.S.C, A.D, N.S.N, L.F., T.Z. and Q.Y. are listed on the following patent assigned to University of Michigan: Composition and Methods for Accelerating and Enhancing Bone Rep

References

  1. Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):9656-61 - PubMed
  2. Ann Plast Surg. 2002 Nov;49(5):511-9 - PubMed
  3. Arch Ortop. 1959;72(1):147-52 - PubMed
  4. Bull World Health Organ. 2003;81(9):646-56 - PubMed
  5. J Clin Invest. 2007 Jun;117(6):1616-26 - PubMed
  6. Br J Haematol. 2007 Aug;138(3):374-81 - PubMed
  7. Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):686-91 - PubMed
  8. J Dent Res. 2008 Feb;87(2):107-18 - PubMed
  9. Curr Osteoporos Rep. 2008 Jun;6(2):67-71 - PubMed
  10. J Orthop Res. 2009 Oct;27(10):1298-305 - PubMed
  11. J Bone Miner Res. 2009 Aug;24(8):1347-53 - PubMed
  12. Drug Deliv. 2009 Oct;16(7):416-21 - PubMed
  13. Antioxid Redox Signal. 2010 Apr;12(4):459-80 - PubMed
  14. HSS J. 2010 Feb;6(1):85-94 - PubMed
  15. Am J Surg. 2009 Dec;198(6):781-6 - PubMed
  16. Plast Reconstr Surg. 2011 Apr;127(4):1487-93 - PubMed
  17. Injury. 2011 Jun;42(6):556-61 - PubMed
  18. Plast Reconstr Surg. 2011 Jul;128(1):114-21 - PubMed
  19. Plast Reconstr Surg. 2011 Nov;128(5):480e-487e - PubMed
  20. Bone. 2013 Jan;52(1):318-25 - PubMed
  21. Ann Plast Surg. 2014 Jan;72(1):100-3 - PubMed
  22. JAMA Otolaryngol Head Neck Surg. 2013 Apr;139(4):382-7 - PubMed
  23. Plast Reconstr Surg. 2013 May;131(5):711e-9e - PubMed
  24. N Am J Med Sci. 2013 May;5(5):309-15 - PubMed
  25. J Biomed Mater Res A. 2014 Sep;102(9):3056-65 - PubMed
  26. Cell Biochem Biophys. 2014 May;69(1):141-9 - PubMed
  27. Plast Reconstr Surg. 2014 Mar;133(3):666-71 - PubMed
  28. Proc Natl Acad Sci U S A. 1989 Dec;86(24):10108-12 - PubMed
  29. Proc Natl Acad Sci U S A. 2015 Jan 6;112(1):94-9 - PubMed
  30. Head Neck. 2016 Apr;38 Suppl 1:E837-43 - PubMed
  31. J Craniofac Surg. 2016 Jun;27(4):880-2 - PubMed
  32. Clin Cases Miner Bone Metab. 2016 May-Aug;13(2):101-105 - PubMed
  33. Int J Hematol Oncol Stem Cell Res. 2016 Oct 1;10(4):239-247 - PubMed
  34. 3 Biotech. 2016 Jun;6(1):67 - PubMed
  35. J Bone Joint Surg Am. 1987 Mar;69(3):355-65 - PubMed
  36. J Bone Joint Surg Br. 1978 Nov;60-B(4):579-82 - PubMed
  37. Toxicol Lett. 1995 Jun;78(1):67-71 - PubMed
  38. Cleft Palate Craniofac J. 1994 Nov;31(6):473-81; discussion 481-2 - PubMed
  39. Clin Orthop Relat Res. 1994 Apr;(301):124-31 - PubMed
  40. MMWR Morb Mortal Wkly Rep. 1996 Oct 18;45(41):877-83 - PubMed
  41. Clin Orthop Relat Res. 1998 May;(350):5-17 - PubMed
  42. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):7987-92 - PubMed
  43. Clin Orthop Relat Res. 1998 Oct;(355 Suppl):S82-9 - PubMed

Publication Types

Grant support