Display options
Share it on

Front Physiol. 2019 May 22;10:616. doi: 10.3389/fphys.2019.00616. eCollection 2019.

Leveraging Mathematical Modeling to Quantify Pharmacokinetic and Pharmacodynamic Pathways: Equivalent Dose Metric.

Frontiers in physiology

Matthew T McKenna, Jared A Weis, Vito Quaranta, Thomas E Yankeelov

Affiliations

  1. Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States.
  2. Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States.
  3. Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, United States.
  4. Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States.
  5. Department of Cancer Biology, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, United States.
  6. Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States.
  7. Department of Diagnostic Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, United States.
  8. Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States.
  9. Oden Institute for Computational and Engineering Sciences, The University of Texas at Austin, Austin, TX, United States.
  10. Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, United States.

PMID: 31178753 PMCID: PMC6538812 DOI: 10.3389/fphys.2019.00616

Abstract

Treatment response assays are often summarized by sigmoidal functions comparing cell survival at a single timepoint to applied drug concentration. This approach has a limited biophysical basis, thereby reducing the biological insight gained from such analysis. In particular, drug pharmacokinetic and pharmacodynamic (PK/PD) properties are overlooked in developing treatment response assays, and the accompanying summary statistics conflate these processes. Here, we utilize mathematical modeling to decouple and quantify PK/PD pathways. We experimentally modulate specific pathways with small molecule inhibitors and filter the results with mechanistic mathematical models to obtain quantitative measures of those pathways. Specifically, we investigate the response of cells to time-varying doxorubicin treatments, modulating doxorubicin pharmacology with small molecules that inhibit doxorubicin efflux from cells and DNA repair pathways. We highlight the practical utility of this approach through proposal of the "equivalent dose metric." This metric, derived from a mechanistic PK/PD model, provides a biophysically-based measure of drug effect. We define equivalent dose as the functional concentration of drug that is bound to the nucleus following therapy. This metric can be used to quantify drivers of treatment response and potentially guide dosing of combination therapies. We leverage the equivalent dose metric to quantify the specific intracellular effects of these small molecule inhibitors using population-scale measurements, and to compare treatment response in cell lines differing in expression of drug efflux pumps. More generally, this approach can be leveraged to quantify the effects of various pharmaceutical and biologic perturbations on treatment response.

Keywords: breast cancer; doxorubicin; mathematical modeling; pharmacodynamics; pharmacokinetic modeling; treatment response

References

  1. Biochem Pharmacol. 1999 Apr 1;57(7):727-41 - PubMed
  2. Biometrics. 1976 Dec;32(4):761-8 - PubMed
  3. Genes Dev. 1999 Apr 15;13(8):916-34 - PubMed
  4. Cancer Res. 1999 Aug 1;59(15):3761-7 - PubMed
  5. Pharmacol Ther. 2000 Mar;85(3):217-29 - PubMed
  6. Cancer Res. 2001 Jan 15;61(2):749-58 - PubMed
  7. AAPS PharmSci. 2002;4(4):E42 - PubMed
  8. Biochim Biophys Acta. 2003 Aug 22;1622(3):169-78 - PubMed
  9. Cancer Res. 2004 Feb 1;64(3):1094-101 - PubMed
  10. Nature. 2005 Apr 14;434(7035):917-21 - PubMed
  11. Oncogene. 2005 Jul 14;24(30):4765-77 - PubMed
  12. Cancer. 2005 Aug 15;104(4):682-91 - PubMed
  13. Adv Biochem Eng Biotechnol. 2005;95:245-65 - PubMed
  14. Semin Oncol. 2005 Dec;32(6 Suppl 7):S9-15 - PubMed
  15. Cancer Res. 2006 Jan 1;66(1):41-5 - PubMed
  16. Cancer Res. 2006 May 15;66(10):5354-62 - PubMed
  17. Pharmacol Rev. 2006 Sep;58(3):621-81 - PubMed
  18. Oncogene. 2006 Sep 25;25(43):5864-74 - PubMed
  19. Expert Rev Anticancer Ther. 2006 Oct;6(10):1361-76 - PubMed
  20. Expert Rev Anticancer Ther. 2007 Apr;7(4):447-59 - PubMed
  21. Nat Rev Cancer. 2008 Mar;8(3):193-204 - PubMed
  22. Nat Rev Cancer. 2008 Mar;8(3):227-34 - PubMed
  23. Methods Enzymol. 2009;467:23-57 - PubMed
  24. Nat Biotechnol. 2012 Jul 10;30(7):679-92 - PubMed
  25. Nat Methods. 2012 Sep;9(9):923-8 - PubMed
  26. Nat Rev Cancer. 2012 Sep;12(9):587-98 - PubMed
  27. J Pharm Pharmacol. 2013 Feb;65(2):157-70 - PubMed
  28. Front Pharmacol. 2013 Jan 31;4:5 - PubMed
  29. Cancer Res. 2013 Apr 15;73(8):2407-11 - PubMed
  30. Sci Transl Med. 2013 May 29;5(187):187ps9 - PubMed
  31. J Pharmacokinet Pharmacodyn. 2013 Aug;40(4):513-25 - PubMed
  32. Nat Chem Biol. 2013 Nov;9(11):708-14 - PubMed
  33. Breast Cancer Res Treat. 2014 Jan;143(1):47-55 - PubMed
  34. J Theor Biol. 2014 Sep 21;357:10-20 - PubMed
  35. J Pharmacokinet Pharmacodyn. 2015 Apr;42(2):179-89 - PubMed
  36. Cancer Res. 2015 Mar 15;75(6):918-23 - PubMed
  37. J Cell Physiol. 2015 Jul;230(7):1403-12 - PubMed
  38. Pharmacol Res Perspect. 2015 Jun;3(3):e00149 - PubMed
  39. Cancer Res. 2016 May 15;76(10):2882-90 - PubMed
  40. Nat Methods. 2016 Jun;13(6):521-7 - PubMed
  41. Nat Methods. 2016 Jun;13(6):497-500 - PubMed
  42. Curr Opin Struct Biol. 2016 Dec;41:145-150 - PubMed
  43. Sci Rep. 2017 Jul 18;7(1):5725 - PubMed
  44. Molecules. 2017 Dec 14;22(12):null - PubMed
  45. Front Pharmacol. 2018 Feb 06;9:31 - PubMed
  46. Transl Oncol. 2018 Jun;11(3):732-742 - PubMed
  47. Front Pharmacol. 2018 May 22;9:535 - PubMed
  48. Expert Rev Anticancer Ther. 2018 Dec;18(12):1271-1286 - PubMed
  49. Clin Cancer Res. 1998 Feb;4(2):389-98 - PubMed
  50. Clin Cancer Res. 1998 Jan;4(1):1-6 - PubMed
  51. Biochim Biophys Acta. 1998 Jul 23;1381(2):131-8 - PubMed
  52. Biochim Biophys Acta. 1998 Oct 1;1400(1-3):257-74 - PubMed

Publication Types

Grant support