Display options
Share it on

Polymers (Basel). 2019 May 30;11(6). doi: 10.3390/polym11060941.

Biocompatible Materials Based on Plasticized Poly(lactic acid), Chitosan and Rosemary Ethanolic Extract I. Effect of Chitosan on the Properties of Plasticized Poly(lactic acid) Materials.

Polymers

Cornelia Vasile, Elena Stoleru, Raluca Nicoleta Darie-Niţa, Raluca Petronela Dumitriu, Daniela Pamfil, Liliana Tarţau

Affiliations

  1. Department of Physical Chemistry of Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, 41A Gr. Ghica Voda Alley, 700487 Iasi, Romania. [email protected].
  2. Department of Physical Chemistry of Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, 41A Gr. Ghica Voda Alley, 700487 Iasi, Romania. [email protected].
  3. Department of Physical Chemistry of Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, 41A Gr. Ghica Voda Alley, 700487 Iasi, Romania. [email protected].
  4. Department of Physical Chemistry of Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, 41A Gr. Ghica Voda Alley, 700487 Iasi, Romania. [email protected].
  5. Department of Physical Chemistry of Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, 41A Gr. Ghica Voda Alley, 700487 Iasi, Romania. [email protected].
  6. "Grigore T. Popa" University of Medicine and Pharmacy Iasi, 16 University Street, 700115 Iasi, Romania. [email protected].

PMID: 31151276 PMCID: PMC6631666 DOI: 10.3390/polym11060941

Abstract

The purpose of the present study is to develop new multifunctional environmentally friendly materials having applications both in medical and food packaging fields. New poly(lactic acid) (PLA)-based multifunctional materials containing additives derived from natural resources like chitosan (CS) and rosemary extract (R) were obtained by melt mixing. Each of the selected components has its own specific properties such as: PLA is a biodegradable thermoplastic aliphatic polyester derived from renewable biomass, heat-resistant, with mechanical properties close to those of polystyrene and polyethylene terephthalate, and CS offers good antimicrobial activity and biological functions, while R significantly improves antioxidative action necessary in all applications. A synergy of their combination, an optimum choice of their ratio, and processing parameters led to high performance antimicrobial/antioxidant/biocompatible/environmentally degradable materials. The polyethylene glycol (PEG)-plasticized PLA/chitosan/powdered rosemary extract biocomposites of various compositions were characterized in respect to their mechanical and rheological properties, structure by spectroscopy, antioxidant and antimicrobial activities, and in vitro and in vivo biocompatibility. Scanning electron microscopy images evidence the morphology features added by rosemary powder presence in polymeric materials. Incorporation of additives improved elongation at break, antibacterial and antioxidant activity and also biocompatibility. Migration of bioactive components into D1 simulant is slower for PEG-plasticized PLA containing 6 wt % chitosan and 0.5 wt % rosemary extract (PLA/PEG/6CS/0.5 R) biocomposite and it occurred by a diffusion-controlled mechanism. The biocomposites show high hydrophilicity and good in vitro and in vivo biocompatibility. No hematological, biochemical and immunological modifications are induced by subcutaneous implantation of biocomposites. All characteristics of the PEG-plasticized PLA-based biocomposites recommend them as valuable materials for biomedical implants, and as well as for the design of innovative drug delivery systems. Also, the developed biocomposites could be a potential nature-derived active packaging with controlled release of antimicrobial/antioxidant compounds.

Keywords: biocomposites; chitosan; natural additives; poly(lactic acid); rosemary extract

References

  1. J Clin Pathol. 2001 Mar;54(3):176-86 - PubMed
  2. Bioorg Med Chem Lett. 2001 Jul 9;11(13):1699-701 - PubMed
  3. Food Addit Contam. 2004 Dec;21(12):1186-202 - PubMed
  4. J Trauma. 2006 Mar;60(3):655-8 - PubMed
  5. J Biomater Appl. 2007 Apr;21(4):413-30 - PubMed
  6. J Biomed Mater Res B Appl Biomater. 2008 Jan;84(1):131-7 - PubMed
  7. Bioresour Technol. 2008 May;99(8):2806-14 - PubMed
  8. J Plant Physiol. 2007 Nov;164(11):1536-42 - PubMed
  9. Biomaterials. 2008 Nov;29(32):4323-32 - PubMed
  10. Crit Rev Food Sci Nutr. 2008 Nov;48(10):913-28 - PubMed
  11. J Mater Sci Mater Med. 2009 Mar;20(3):775-83 - PubMed
  12. Plant Foods Hum Nutr. 2010 Jun;65(2):158-63 - PubMed
  13. Biomacromolecules. 2010 Aug 9;11(8):1897-908 - PubMed
  14. Chem Biodivers. 2010 Jul;7(7):1835-40 - PubMed
  15. Int J Biol Macromol. 2010 Dec 1;47(5):646-53 - PubMed
  16. Mar Drugs. 2010 Aug 02;8(8):2252-66 - PubMed
  17. Talanta. 2011 Jul 15;85(1):167-76 - PubMed
  18. Carbohydr Polym. 2012 Oct 1;90(2):948-56 - PubMed
  19. J Agric Food Chem. 2012 Sep 12;60(36):9305-14 - PubMed
  20. Carbohydr Polym. 2013 Jan 2;91(1):377-84 - PubMed
  21. Int J Mol Sci. 2013 Jan 16;14(1):1854-69 - PubMed
  22. Front Chem. 2014 Feb 26;2:6 - PubMed
  23. Molecules. 2014 Oct 08;19(10):16024-38 - PubMed
  24. Mar Drugs. 2015 Apr 01;13(4):1819-46 - PubMed
  25. Int J Biol Macromol. 2015 Sep;80:445-54 - PubMed
  26. J Food Sci. 2016 Feb;81(2):E419-29 - PubMed
  27. Int J Biol Macromol. 2016 Dec;93(Pt B):1446-1456 - PubMed
  28. Int J Biol Macromol. 2017 Feb;95:494-504 - PubMed
  29. Materials (Basel). 2017 May 31;10(6):null - PubMed
  30. Adv Med Sci. 2018 Mar;63(1):14-21 - PubMed
  31. Medicines (Basel). 2018 Jan 23;5(1):null - PubMed
  32. Int J Mol Sci. 2018 Jan 30;19(2):null - PubMed
  33. Artif Cells Nanomed Biotechnol. 2018;46(sup2):419-430 - PubMed
  34. Evid Based Complement Alternat Med. 2018 Jun 6;2018:1945179 - PubMed
  35. Materials (Basel). 2018 Sep 25;11(10):null - PubMed
  36. Materials (Basel). 2018 Sep 26;11(10):null - PubMed
  37. Materials (Basel). 2019 Jan 25;12(3):null - PubMed
  38. Polymers (Basel). 2018 Sep 30;10(10):null - PubMed
  39. Polymers (Basel). 2017 Oct 19;9(10):null - PubMed
  40. Polymers (Basel). 2016 Apr 22;8(4):null - PubMed
  41. Pharm Acta Helv. 1985;60(4):110-1 - PubMed
  42. Biomaterials. 1994 Aug;15(10):737-44 - PubMed
  43. Carbohydr Res. 1997 Mar 26;299(1-2):99-101 - PubMed

Publication Types

Grant support