Display options
Share it on

Front Microbiol. 2019 Jun 12;10:1262. doi: 10.3389/fmicb.2019.01262. eCollection 2019.

Single Cell Genomics-Based Analysis of Gene Content and Expression of Prophages in a Diffuse-Flow Deep-Sea Hydrothermal System.

Frontiers in microbiology

Jessica M Labonté, Maria Pachiadaki, Elizabeth Fergusson, Jesse McNichol, Ashley Grosche, Lara K Gulmann, Costantino Vetriani, Stefan M Sievert, Ramunas Stepanauskas

Affiliations

  1. Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States.
  2. Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, United States.
  3. Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States.
  4. Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, United States.
  5. Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, United States.

PMID: 31244796 PMCID: PMC6581674 DOI: 10.3389/fmicb.2019.01262

Abstract

Phage-host interactions likely play a major role in the composition and functioning of many microbiomes, yet remain poorly understood. Here, we employed single cell genomics to investigate phage-host interactions in a diffuse-flow, low-temperature hydrothermal vent that may be reflective of a broadly distributed biosphere in the subseafloor. We identified putative prophages in 13 of 126 sequenced single amplified genomes (SAGs), with no evidence for lytic infections, which is in stark contrast to findings in the surface ocean. Most were distantly related to known prophages, while their hosts included bacterial phyla Campylobacterota, Bacteroidetes, Chlorobi, Proteobacteria, Lentisphaerae, Spirochaetes, and Thermotogae. Our results suggest the predominance of lysogeny over lytic interaction in diffuse-flow, deep-sea hydrothermal vents, despite the high activity of the dominant Campylobacteria that would favor lytic infections. We show that some of the identified lysogens have co-evolved with their host over geological time scales and that their genes are transcribed in the environment. Functional annotations of lysogeny-related genes suggest involvement in horizontal gene transfer enabling host's protection against toxic metals and antibacterial compounds.

Keywords: hydrothermal vent; lysogeny; phage life cycle; prophages; single cell genomics

References

  1. Appl Environ Microbiol. 1999 Oct;65(10):4375-84 - PubMed
  2. Microbiol Mol Biol Rev. 2000 Mar;64(1):69-114 - PubMed
  3. Appl Environ Microbiol. 2002 Sep;68(9):4613-22 - PubMed
  4. Appl Environ Microbiol. 2003 Jun;69(6):3580-92 - PubMed
  5. Microbiol Mol Biol Rev. 2003 Jun;67(2):238-76, table of contents - PubMed
  6. Mol Microbiol. 2003 Jul;49(2):277-300 - PubMed
  7. Appl Environ Microbiol. 2004 Mar;70(3):1307-14 - PubMed
  8. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 - PubMed
  9. FEMS Microbiol Rev. 2004 May;28(2):127-81 - PubMed
  10. Environ Microbiol. 2005 Oct;7(10):1619-32 - PubMed
  11. Appl Environ Microbiol. 2006 Jul;72(7):4950-6 - PubMed
  12. Science. 2007 Mar 23;315(5819):1709-12 - PubMed
  13. Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):12146-50 - PubMed
  14. Science. 1979 Mar 16;203(4385):1073-83 - PubMed
  15. Science. 1985 Aug 23;229(4715):717-25 - PubMed
  16. Nucleic Acids Res. 2008 Apr;36(7):2295-300 - PubMed
  17. Genome Res. 2008 May;18(5):821-9 - PubMed
  18. FEMS Microbiol Ecol. 2008 Jul;65(1):1-14 - PubMed
  19. ISME J. 2008 Jun;2(6):579-89 - PubMed
  20. ISME J. 2008 Nov;2(11):1112-21 - PubMed
  21. FEMS Microbiol Ecol. 2003 Apr 1;43(3):393-409 - PubMed
  22. Nat Rev Microbiol. 2009 Nov;7(11):828-36 - PubMed
  23. Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):19126-31 - PubMed
  24. BMC Bioinformatics. 2009 Dec 15;10:421 - PubMed
  25. Syst Biol. 2010 May;59(3):307-21 - PubMed
  26. Bioinformatics. 2011 Apr 1;27(7):1009-10 - PubMed
  27. FEMS Microbiol Ecol. 2011 Jul;77(1):120-33 - PubMed
  28. Bioinformatics. 2011 Nov 1;27(21):2957-63 - PubMed
  29. Front Microbiol. 2011 Sep 20;2:192 - PubMed
  30. Front Microbiol. 2011 Nov 09;2:219 - PubMed
  31. Bioinformatics. 2012 Jun 15;28(12):1647-9 - PubMed
  32. Bioinformatics. 2012 Jul 15;28(14):1823-9 - PubMed
  33. J Bacteriol. 2012 Nov;194(21):5974-5 - PubMed
  34. Ann N Y Acad Sci. 2013 Jan;1277:91-104 - PubMed
  35. Environ Microbiol. 2013 Sep;15(9):2463-75 - PubMed
  36. Front Microbiol. 2013 Jul 08;4:185 - PubMed
  37. Nucleic Acids Res. 2014 Jan;42(Database issue):D633-42 - PubMed
  38. ISME J. 2014 Jul;8(7):1510-21 - PubMed
  39. Bioinformatics. 2014 Aug 1;30(15):2114-20 - PubMed
  40. ISME J. 2015 Mar 17;9(4):871-81 - PubMed
  41. Nat Methods. 2015 Jan;12(1):59-60 - PubMed
  42. Bioinformatics. 2015 May 15;31(10):1674-6 - PubMed
  43. ISME J. 2015 Nov;9(11):2386-99 - PubMed
  44. Front Microbiol. 2015 Apr 22;6:349 - PubMed
  45. PeerJ. 2015 May 28;3:e985 - PubMed
  46. Cold Spring Harb Protoc. 2017 Apr 3;2017(4):pdb.prot093450 - PubMed
  47. Front Microbiol. 2017 Apr 24;8:682 - PubMed
  48. Nat Commun. 2017 Jul 20;8(1):84 - PubMed
  49. Front Microbiol. 2018 Apr 18;9:772 - PubMed
  50. Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6756-6761 - PubMed
  51. J Mol Evol. 1987;26(1-2):74-86 - PubMed
  52. Nucleic Acids Res. 1997 Mar 1;25(5):955-64 - PubMed

Publication Types