Display options
Share it on

Front Physiol. 2019 May 15;10:555. doi: 10.3389/fphys.2019.00555. eCollection 2019.

The Functional Network Processing Acute Electrical Itch Stimuli in Humans.

Frontiers in physiology

Hideki Mochizuki, Loren E Hernandez, Gil Yosipovitch, Norihiro Sadato, Ryusuke Kakigi

Affiliations

  1. Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, Miller School of Medicine, University of Miami, Miami, FL, United States.
  2. Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan.
  3. Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Japan.

PMID: 31156452 PMCID: PMC6529842 DOI: 10.3389/fphys.2019.00555

Abstract

The posterior insula (pIns) is a major brain region that receives itch-related signals from the periphery and transfers these signals to broad areas in the brain. Previous brain imaging studies have successfully identified brain regions that respond to itch stimuli. However, it is still unknown which brain regions receive and process itch-related signals from the pIns. Addressing this question is important in identifying key functional networks that process itch. Thus, the present study investigated brain regions with significantly increased functional connectivity with the pIns during itch stimuli with 25 healthy subjects by using functional MRI. Electrical itch stimuli was applied to the left wrist. Similar to previous brain imaging studies, many cortical and subcortical areas were activated by itch stimuli. However, not all of these regions showed significant increments of functional connectivity with the pIns during itch stimuli. While the subjects perceived the itch sensation, functional connectivity was significantly increased between the right pIns and the supplementary motor area (SMA), pre-SMA, anterior midcingulate cortex (aMCC), anterior insula (aIns), secondary somatosensory cortex (SII), and basal ganglia (BG), suggesting that this is a key network in processing itch. In particular, intensity of functional connectivity between the pIns and BG was negatively correlated with itch rating. The functional pIns-BG pathway may play an important role in regulation of subjective itch sensation. This study first identified a key brain network to process itch.

Keywords: basal ganglia; fMRI; functional connectivity; itch; posterior insula

References

  1. J Invest Dermatol. 2000 Dec;115(6):1029-33 - PubMed
  2. Nat Neurosci. 2001 Jan;4(1):72-7 - PubMed
  3. Pain. 2001 May;92(1-2):295-305 - PubMed
  4. Cereb Cortex. 2002 Apr;12(4):376-85 - PubMed
  5. Prog Neurobiol. 2002 Apr;66(6):355-474 - PubMed
  6. Pain. 2003 Sep;105(1-2):339-46 - PubMed
  7. J Neurophysiol. 2004 Jan;91(1):213-22 - PubMed
  8. Pain. 2005 Jan;113(1-2):148-54 - PubMed
  9. Eur J Pain. 2005 Aug;9(4):463-84 - PubMed
  10. J Invest Dermatol. 2005 Aug;125(2):380-2 - PubMed
  11. J Neurophysiol. 2007 Jan;97(1):415-22 - PubMed
  12. Neuroimage. 2007 Jul 1;36(3):706-17 - PubMed
  13. J Invest Dermatol. 2008 Feb;128(2):426-33 - PubMed
  14. J Neurophysiol. 2007 Oct;98(4):2347-56 - PubMed
  15. J Neurosci. 2007 Sep 12;27(37):10007-14 - PubMed
  16. Eur J Pain. 2008 Oct;12(7):834-41 - PubMed
  17. Neuroimage. 2008 May 1;40(4):1765-71 - PubMed
  18. Pain. 2008 Sep 15;138(3):598-603 - PubMed
  19. Neuropsychology. 2008 May;22(3):412-8 - PubMed
  20. Neuroimage. 2009 Feb 15;44(4):1363-8 - PubMed
  21. Br J Dermatol. 2009 Nov;161(5):1072-80 - PubMed
  22. J Neurophysiol. 2009 Nov;102(5):2657-66 - PubMed
  23. J Neurosci. 2009 Nov 11;29(45):14223-35 - PubMed
  24. Mol Pain. 2010 May 13;6:27 - PubMed
  25. Brain Struct Funct. 2010 Jun;214(5-6):563-77 - PubMed
  26. Brain. 2010 Sep;133(9):2528-39 - PubMed
  27. Neuroimage. 2011 Jan 15;54(2):1324-35 - PubMed
  28. Neuroimage. 2011 Feb 1;54(3):2237-49 - PubMed
  29. Neuroimage. 2011 Mar 1;55(1):8-23 - PubMed
  30. Brain Struct Funct. 2011 Jun;216(2):137-49 - PubMed
  31. Pain. 2011 Apr;152(4):946-51 - PubMed
  32. Neuroscience. 2011 May 19;182:115-24 - PubMed
  33. Hum Brain Mapp. 2012 Sep;33(9):2005-34 - PubMed
  34. Cell Mol Neurobiol. 2012 Jan;32(1):1-12 - PubMed
  35. Acta Derm Venereol. 2011 Sep;91(5):504-10 - PubMed
  36. Brain. 2012 Feb;135(Pt 2):631-40 - PubMed
  37. Neuroimage. 2012 Feb 15;59(4):3611-23 - PubMed
  38. Neuroimage. 2012 Feb 15;59(4):3514-21 - PubMed
  39. Br J Dermatol. 2012 May;166(5):994-1001 - PubMed
  40. Cortex. 2013 May;49(5):1292-303 - PubMed
  41. Cereb Cortex. 2014 Apr;24(4):873-82 - PubMed
  42. Pain. 2013 Oct;154(10):1989-98 - PubMed
  43. Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):13982-7 - PubMed
  44. J Neurophysiol. 2014 Feb;111(3):488-98 - PubMed
  45. Nat Rev Neurosci. 2014 Jan;15(1):19-31 - PubMed
  46. Ann N Y Acad Sci. 2014 May;1316:53-70 - PubMed
  47. J Neurophysiol. 2014 Oct 1;112(7):1729-38 - PubMed
  48. Neuron. 2014 Nov 19;84(4):821-34 - PubMed
  49. Nat Neurosci. 2015 Apr;18(4):499-500 - PubMed
  50. J Affect Disord. 2015 Dec 1;188:80-8 - PubMed
  51. Cereb Cortex. 2017 Feb 1;27(2):1216-1228 - PubMed
  52. Psychiatry Res Neuroimaging. 2016 Feb 28;248:48-54 - PubMed
  53. Am Psychol. 2016 Nov;71(8):670-679 - PubMed
  54. Front Mol Neurosci. 2016 Dec 06;9:141 - PubMed
  55. Mol Autism. 2017 Jun 13;8:25 - PubMed
  56. Nat Rev Neurosci. 2017 Nov 16;18(12):741-752 - PubMed
  57. Sci Rep. 2018 Jun 5;8(1):8596 - PubMed
  58. J Comp Neurol. 1982 Nov 20;212(1):38-52 - PubMed
  59. Pain. 1995 Jan;60(1):3-38 - PubMed
  60. J Neurophysiol. 1994 Dec;72(6):3004-8 - PubMed
  61. J Neurosci. 1997 Oct 15;17(20):8003-8 - PubMed
  62. Neuroimage. 1997 Oct;6(3):218-29 - PubMed
  63. J Neurosci. 1997 Dec 15;17(24):9686-705 - PubMed

Publication Types