Display options
Share it on

Science. 2019 Jun 28;364(6447). doi: 10.1126/science.aaw9486.

Generation of extreme-ultraviolet beams with time-varying orbital angular momentum.

Science (New York, N.Y.)

Laura Rego, Kevin M Dorney, Nathan J Brooks, Quynh L Nguyen, Chen-Ting Liao, Julio San Román, David E Couch, Allison Liu, Emilio Pisanty, Maciej Lewenstein, Luis Plaja, Henry C Kapteyn, Margaret M Murnane, Carlos Hernández-García

Affiliations

  1. Grupo de Investigación en Aplicaciones del Láser y Fotónica, Departamento de Física Aplicada, University of Salamanca, Salamanca E-37008, Spain. [email protected] [email protected].
  2. JILA, Department of Physics, University of Colorado and NIST, Boulder, CO 80309, USA. [email protected] [email protected].
  3. JILA, Department of Physics, University of Colorado and NIST, Boulder, CO 80309, USA.
  4. Grupo de Investigación en Aplicaciones del Láser y Fotónica, Departamento de Física Aplicada, University of Salamanca, Salamanca E-37008, Spain.
  5. ICFO, Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona), Spain.
  6. ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain.
  7. Kapteyn-Murnane Laboratories Inc. (KMLabs Inc.), 4775 Walnut Street no. 102, Boulder, CO 80301, USA.

PMID: 31249031 DOI: 10.1126/science.aaw9486

Abstract

Light fields carrying orbital angular momentum (OAM) provide powerful capabilities for applications in optical communications, microscopy, quantum optics, and microparticle manipulation. We introduce a property of light beams, manifested as a temporal OAM variation along a pulse: the self-torque of light. Although self-torque is found in diverse physical systems (i.e., electrodynamics and general relativity), it was not realized that light could possess such a property. We demonstrate that extreme-ultraviolet self-torqued beams arise in high-harmonic generation driven by time-delayed pulses with different OAM. We monitor the self-torque of extreme-ultraviolet beams through their azimuthal frequency chirp. This class of dynamic-OAM beams provides the ability for controlling magnetic, topological, and quantum excitations and for manipulating molecules and nanostructures on their natural time and length scales.

Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

Publication Types