Display options
Share it on

Comput Toxicol. 2019 May;10:158-168. doi: 10.1016/j.comtox.2018.09.001.

Role of Physiologically Based Kinetic modelling in addressing environmental chemical mixtures - A review.

Computational toxicology (Amsterdam, Netherlands)

Anteneh Desalegn, Stephanie Bopp, David Asturiol, Lara Lamon, Andrew Worth, Alicia Paini

Affiliations

  1. European Commission, Joint Research Centre, Ispra, VA, Italy.

PMID: 31218267 PMCID: PMC6559215 DOI: 10.1016/j.comtox.2018.09.001

Abstract

The role of Physiologically Based Kinetic (PBK) modelling in assessing mixture toxicology has been growing for the last three decades. It has been widely used to investigate and address interactions in mixtures. This review describes the current state-of-the-art of PBK models for chemical mixtures and to evaluate the applications of PBK modelling for mixtures with emphasis on their role in chemical risk assessment. A total of 35 mixture PBK models were included after searching web resources (Scopus, PubMed, Web of Science, and Google Scholar), screening for duplicates, and excluding articles based on eligibility criteria. Binary mixtures and volatile organic compounds accounted for two-thirds of the chemical mixtures identified. The most common exposure route and modelled system were found to be inhalation and rats respectively. Twenty two (22) models were for binary mixtures, 5 for ternary mixtures, 3 for quaternary mixtures, and 5 for complex mixtures. Both bottom-up and top-down PBK modelling approaches are described. Whereas bottom-up approaches are based on a series of binary interactions, top-down approaches are based on the lumping of mixture components. Competitive inhibition is the most common type of interaction among the various types of mixtures, and usually becomes a concern at concentrations higher than environmental exposure levels. It leads to reduced biotransformation that either means a decrease in the amount of toxic metabolite formation or an increase in toxic parent chemical accumulation. The consequence is either lower or higher toxicity compared to that estimated for the mixture based on the additivity principle. Therefore, PBK modelling can play a central role in predicting interactions in chemical mixture risk assessment.

Keywords: Biokinetics; Interaction; Mixture; PBPK; Pharmacokinetics; Physiologically based pharmacokinetic modelling; Toxicokinetic interaction

References

  1. Toxicol Lett. 1999 May 20;106(1):49-57 - PubMed
  2. J Pharmacol Exp Ther. 1999 Jul;290(1):429-38 - PubMed
  3. Toxicol Sci. 1999 Jun;49(2):312-7 - PubMed
  4. Toxicol Lett. 1999 Sep 5;108(2-3):303-8 - PubMed
  5. Toxicol Appl Pharmacol. 1999 Dec 15;161(3):249-57 - PubMed
  6. J Toxicol Environ Health A. 2000 Apr 28;59(8):653-70 - PubMed
  7. Int Arch Occup Environ Health. 2001 Jan;74(1):31-7 - PubMed
  8. Arch Toxicol. 2001 May;75(3):134-44 - PubMed
  9. Toxicol Sci. 2002 Jan;65(1):26-34 - PubMed
  10. Environ Health Perspect. 2002 Dec;110 Suppl 6:989-94 - PubMed
  11. Toxicol Appl Pharmacol. 2003 Jun 15;189(3):221-32 - PubMed
  12. Inhal Toxicol. 2003 Sep;15(10):961-86 - PubMed
  13. Crit Rev Toxicol. 2004 Mar-Apr;34(2):143-207 - PubMed
  14. J Pharmacokinet Pharmacodyn. 2004 Jun;31(3):215-42 - PubMed
  15. Environ Sci Technol. 2004 Nov 1;38(21):5674-81 - PubMed
  16. J Occup Environ Hyg. 2005 Mar;2(3):127-35 - PubMed
  17. Neurotoxicology. 2008 May;29(3):428-43 - PubMed
  18. Toxicol Appl Pharmacol. 2008 Sep 1;231(2):248-59 - PubMed
  19. Toxicology. 1991;68(1):89-100 - PubMed
  20. Toxicol Appl Pharmacol. 1991 Sep 1;110(2):303-14 - PubMed
  21. Drug Metab Dispos. 1977 Jul-Aug;5(4):386-96 - PubMed
  22. Toxicol Appl Pharmacol. 2010 Jun 1;245(2):179-90 - PubMed
  23. J Pharm Sci. 2010 Oct;99(10):4406-26 - PubMed
  24. Crit Rev Toxicol. 2011 May;41(5):369-83 - PubMed
  25. SAR QSAR Environ Res. 2011 Mar;22(1-2):107-28 - PubMed
  26. Int J Environ Res Public Health. 2011 May;8(5):1613-30 - PubMed
  27. Environ Toxicol Pharmacol. 2004 Mar;16(1-2):57-71 - PubMed
  28. Environ Toxicol Pharmacol. 2004 Mar;16(1-2):93-105 - PubMed
  29. Environ Toxicol Pharmacol. 2004 Mar;16(1-2):107-19 - PubMed
  30. Environ Health Perspect. 2011 Dec;119(12):1712-8 - PubMed
  31. J Soc Occup Med. 1990 Autumn;40(3):94-6 - PubMed
  32. Inhal Toxicol. 2012 Jan;24(1):1-26 - PubMed
  33. Sci Total Environ. 2013 Jul 1;456-457:307-16 - PubMed
  34. Toxicol Lett. 1990 Jul;52(2):141-52 - PubMed
  35. Am Ind Hyg Assoc J. 1990 Jul;51(7):356-62 - PubMed
  36. Mol Nutr Food Res. 2013 Nov;57(11):1969-78 - PubMed
  37. Food Chem Toxicol. 2014 Apr;66:373-84 - PubMed
  38. PLoS One. 2014 May 02;9(5):e96580 - PubMed
  39. PLoS Comput Biol. 2016 Feb 12;12(2):e1004495 - PubMed
  40. Environ Sci Technol. 2016 Mar 15;50(6):3231-8 - PubMed
  41. Regul Toxicol Pharmacol. 2016 Oct;80:321-34 - PubMed
  42. Br J Ind Med. 1989 Jul;46(7):447-60 - PubMed
  43. Toxicol Appl Pharmacol. 1988 Nov;96(2):191-211 - PubMed
  44. Int Arch Occup Environ Health. 1988;60(1):15-20 - PubMed
  45. Toxicol Appl Pharmacol. 1987 Jun 30;89(2):149-57 - PubMed
  46. Toxicol Appl Pharmacol. 1986 Dec;86(3):341-52 - PubMed
  47. Br J Ind Med. 1986 Nov;43(11):760-8 - PubMed
  48. Toxicol Appl Pharmacol. 1979 Apr;48(2):249-56 - PubMed
  49. Xenobiotica. 1972 Mar;2(2):101-6 - PubMed
  50. Toxicol Appl Pharmacol. 1984 Mar 30;73(1):159-75 - PubMed
  51. Int Arch Occup Environ Health. 1982;50(4):351-8 - PubMed
  52. Risk Anal. 1995 Jun;15(3):335-42 - PubMed
  53. J Med Chem. 1994 Dec 23;37(26):4479-89 - PubMed
  54. Toxicol Appl Pharmacol. 1995 Feb;130(2):237-47 - PubMed
  55. Fundam Appl Toxicol. 1993 Oct;21(3):258-69 - PubMed
  56. Toxicol Appl Pharmacol. 1993 Jun;120(2):266-73 - PubMed
  57. Toxicology. 1995 Dec 28;105(2-3):355-64 - PubMed
  58. Toxicol Lett. 1995 Dec;82-83:497-504 - PubMed
  59. Drug Metab Dispos. 1996 Feb;24(2):203-10 - PubMed
  60. Arch Toxicol. 1996;70(11):704-13 - PubMed
  61. Toxicol Appl Pharmacol. 1997 May;144(1):120-34 - PubMed
  62. Toxicol Appl Pharmacol. 1979 Nov;51(2):283-93 - PubMed

Publication Types