Display options
Share it on

Clin Proteomics. 2019 May 30;16:23. doi: 10.1186/s12014-019-9243-3. eCollection 2019.

Elucidating the endogenous synovial fluid proteome and peptidome of inflammatory arthritis using label-free mass spectrometry.

Clinical proteomics

Shalini M Mahendran, Edward C Keystone, Roman J Krawetz, Kun Liang, Eleftherios P Diamandis, Vinod Chandran

Affiliations

  1. 1Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada.
  2. 2Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON Canada.
  3. 3Department of Rheumatology, Mount Sinai Hospital, Toronto, ON Canada.
  4. 4McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB Canada.
  5. 5Department of Surgery, University of Calgary, Calgary, AB Canada.
  6. 6Department of Anatomy and Cell Biology, University of Calgary, Calgary, AB Canada.
  7. 7Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON Canada.
  8. 8Department of Clinical Biochemistry, University Health Network, Toronto, ON Canada.
  9. 9Centre for Prognosis Studies in Rheumatic Diseases, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada.
  10. 10Division of Rheumatology, Department of Medicine, University of Toronto, Toronto, ON Canada.
  11. 11Institute of Medical Science, University of Toronto, Toronto, ON Canada.

PMID: 31160890 PMCID: PMC6542032 DOI: 10.1186/s12014-019-9243-3

Abstract

BACKGROUND: Inflammatory arthritis (IA) is an immunological disorder in which loss of immune tolerance to endogenous self-antigens perpetuates synovitis and eventual destruction of the underlying cartilage and bone. Pathological changes in the joint are expected to be represented by synovial fluid (SF) proteins and peptides. In the present study, a mass spectrometry-based approach was utilized for the identification of key protein and peptide mediators of IA.

METHODS: Age-matched SF samples from 10 rheumatoid arthritis patients, 10 psoriatic arthritis patients and 10 cadaveric controls were subjected to an integrated proteomic and peptidomic protocol using liquid chromatography tandem mass spectrometry. Significant differentially abundant proteins and peptides were identified between cohorts according to the results of a Mann-Whitney U test coupled to the Benjamini-Hochberg correction for multiple hypothesis testing. Fold change ratios were computed for each protein and peptide according to their log-transformed extracted ion current. Pathway analysis and antimicrobial peptide (AMP) prediction were conducted to clarify the pathophysiological relevance of identified proteins and peptides to IA.

RESULTS: We determined that 144 proteins showed significant differential abundance between the IA and control SF proteomes, of which 11 protein candidates were selected for future follow-up studies. Similar analyses applied to our peptidomic data identified 15 peptide sequences, originating from 4 protein precursors, to have significant differential abundance in IA compared to the control SF peptidome. Pathway enrichment analysis of the IA SF peptidome along with AMP prediction suggests a possible mechanistic role of microbes in eliciting an immune response which drives the development of IA.

CONCLUSIONS: The discovery-phase data generated herein has provided a basis for the identification of candidates with the greatest potential to serve as novel serum biomarkers specific to inflammatory arthritides. Moreover, these findings facilitate the understanding of possible disease mechanisms specific to each subtype.

Keywords: Biomarkers; Inflammatory arthritis; Mass spectrometry; Peptidomics; Proteomics; Psoriatic arthritis; Rheumatoid arthritis; Synovial fluid

Conflict of interest statement

Competing interestsThe authors declare that they have no competing financial interest.

References

  1. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 - PubMed
  2. Arthritis Rheum. 2000 Mar;43(3):608-16 - PubMed
  3. J Immunol. 2000 Nov 1;165(9):5255-61 - PubMed
  4. J Pathol. 2002 Nov;198(3):369-77 - PubMed
  5. J Immunol. 2003 Jan 15;170(2):838-45 - PubMed
  6. Circulation. 2003 Mar 11;107(9):1303-7 - PubMed
  7. Amino Acids. 2004 Dec;27(3-4):249-59 - PubMed
  8. Clin Exp Immunol. 1992 May;88(2):313-7 - PubMed
  9. Arthritis Res Ther. 2006;8(1):R5 - PubMed
  10. Arthritis Rheum. 2006 Aug;54(8):2665-73 - PubMed
  11. J Proteome Res. 2006 Sep;5(9):2152-8 - PubMed
  12. J Proteome Res. 2007 Feb;6(2):828-36 - PubMed
  13. J Proteome Res. 2007 Nov;6(11):4388-96 - PubMed
  14. Clin Chem. 2008 Oct;54(10):1608-16 - PubMed
  15. Nat Biotechnol. 2008 Dec;26(12):1367-72 - PubMed
  16. J Immunol. 2010 Jan 1;184(1):379-90 - PubMed
  17. Proteomics Clin Appl. 2007 Aug;1(8):889-99 - PubMed
  18. Arthritis Rheum. 2011 Apr;63(4):884-93 - PubMed
  19. Nat Rev Rheumatol. 2011 Jun 14;7(7):381-90 - PubMed
  20. Nat Rev Rheumatol. 2011 Aug 23;7(10):569-78 - PubMed
  21. Arthritis Rheum. 2012 Jan;64(1):141-52 - PubMed
  22. Mol Cell Proteomics. 2012 Feb;11(2):M111.013904 - PubMed
  23. Mol Cancer. 2013 Oct 07;12(1):117 - PubMed
  24. Bioinformatics. 2014 Feb 15;30(4):523-30 - PubMed
  25. J Immunol Res. 2014;2014:696415 - PubMed
  26. Clin Proteomics. 2014 Jul 01;11(1):27 - PubMed
  27. Arthritis Rheumatol. 2014 Dec;66(12):3300-10 - PubMed
  28. Arthritis Rheumatol. 2015 Jan;67(1):128-39 - PubMed
  29. Lupus. 2015 May;24(6):582-7 - PubMed
  30. Curr Opin Rheumatol. 2015 Mar;27(2):118-26 - PubMed
  31. Nucleic Acids Res. 2015 Apr 20;43(7):e47 - PubMed
  32. Clin Proteomics. 2015 Jan 13;12(1):1 - PubMed
  33. Iran J Basic Med Sci. 2014 Sep;17(9):651-5 - PubMed
  34. Nat Med. 2015 Aug;21(8):895-905 - PubMed
  35. Nucleic Acids Res. 2016 Jan 4;44(D1):D1094-7 - PubMed
  36. Semin Thromb Hemost. 2016 Jun;42(4):408-21 - PubMed
  37. Cell Div. 2016 Apr 22;11:6 - PubMed
  38. J Transl Med. 2016 Aug 04;14(1):233 - PubMed
  39. N Engl J Med. 2017 Mar 9;376(10):957-970 - PubMed
  40. Eur Heart J. 2018 Oct 14;39(39):3608-3614 - PubMed
  41. Enzymes. 2017;42:27-64 - PubMed
  42. Nucleic Acids Res. 2018 Jan 4;46(D1):D1271-D1281 - PubMed
  43. Sci Rep. 2017 Nov 15;7(1):15613 - PubMed
  44. Bioinformatics. 2018 May 1;34(9):1589-1590 - PubMed
  45. Cell Physiol Biochem. 2018;47(1):266-278 - PubMed
  46. Am J Med. 1978 Sep;65(3):430-6 - PubMed
  47. Arthritis Rheum. 1988 Mar;31(3):315-24 - PubMed
  48. Gastroenterology. 1987 Feb;92(2):329-37 - PubMed
  49. Br J Rheumatol. 1994 Nov;33(11):1030-8 - PubMed
  50. Clin Cardiol. 1993 Jul;16(7):548-52 - PubMed
  51. Nat Genet. 1997 Jul;16(3):311-5 - PubMed
  52. Arthritis Rheum. 1997 Nov;40(11):1955-61 - PubMed

Publication Types