Display options
Share it on

Funct Imaging Model Heart. 2019 Jun;11504:294-303. doi: 10.1007/978-3-030-21949-9_32. Epub 2019 May 30.

Model of Left Ventricular Contraction: Validation Criteria and Boundary Conditions.

Functional imaging and modeling of the heart : ... International Workshop, FIMH ..., proceedings. FIMH

Aditya V S Ponnaluri, Ilya A Verzhbinsky, Jeff D Eldredge, Alan Garfinkel, Daniel B Ennis, Luigi E Perotti

Affiliations

  1. Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA.
  2. Department of Radiology, Stanford University, Stanford, CA 94305, USA.
  3. Departments of Medicine (Cardiology) and Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA.
  4. Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA.

PMID: 31231721 PMCID: PMC6588286 DOI: 10.1007/978-3-030-21949-9_32

Abstract

Computational models of cardiac contraction can provide critical insight into cardiac function and dysfunction. A necessary step before employing these computational models is their validation. Here we propose a series of validation criteria based on left ventricular (LV) global (ejection fraction and twist) and local (strains in a cylindrical coordinate system, aggregate cardiomyocyte shortening, and low myocardial compressibility) MRI measures to characterize LV motion and deformation during contraction. These validation criteria are used to evaluate an LV finite element model built from subject-specific anatomy and aggregate cardiomyocyte orientations reconstructed from diffusion tensor MRI. We emphasize the key role of the simulation boundary conditions in approaching the physiologically correct motion and strains during contraction. We conclude by comparing the global and local validation criteria measures obtained using two different boundary conditions: the first constraining the LV base and the second taking into account the presence of the pericardium, which leads to greatly improved motion and deformation.

Keywords: Boundary conditions; Cardiac contraction; MRI; Validation criteria

References

  1. Radiology. 2000 Feb;214(2):453-66 - PubMed
  2. Radiology. 2000 Jul;216(1):128-39 - PubMed
  3. Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Nov;68(5 Pt 1):051910 - PubMed
  4. Magn Reson Med. 2006 Mar;55(3):484-90 - PubMed
  5. IEEE Trans Med Imaging. 1994;13(4):716-24 - PubMed
  6. Heart. 2008 Apr;94(4):426-8 - PubMed
  7. Circ Res. 1991 Jan;68(1):217-25 - PubMed
  8. Magn Reson Med. 2010 Oct;64(4):1089-97 - PubMed
  9. Biomech Model Mechanobiol. 2014 Jun;13(3):627-41 - PubMed
  10. J Appl Physiol (1985). 2014 Jul 15;117(2):142-52 - PubMed
  11. J Magn Reson Imaging. 2015 Aug;42(2):400-6 - PubMed
  12. PLoS One. 2014 Dec 10;9(12):e114494 - PubMed
  13. Interface Focus. 2016 Apr 6;6(2):20150083 - PubMed
  14. IEEE Trans Med Imaging. 2016 Nov;35(11):2486-2496 - PubMed
  15. Comput Methods Appl Mech Eng. 2017 Feb 1;314:85-101 - PubMed
  16. Funct Imaging Model Heart. 2017 Jun;10263:381-391 - PubMed
  17. Biomech Model Mechanobiol. 2019 Apr;18(2):503-529 - PubMed
  18. Am J Physiol. 1996 Nov;271(5 Pt 2):H1864-70 - PubMed

Publication Types

Grant support