Display options
Share it on

Front Physiol. 2019 Jul 09;10:883. doi: 10.3389/fphys.2019.00883. eCollection 2019.

Theoretical Modeling and Experimental Detection of the Extracellular Phasic Impedance Modulation in Rabbit Hearts.

Frontiers in physiology

Shahriar Iravanian, Conner Herndon, Jonathan J Langberg, Flavio H Fenton

Affiliations

  1. Division of Cardiology, Emory University, Atlanta, GA, United States.
  2. School of Physics, Georgia Tech, Atlanta, GA, United States.

PMID: 31338040 PMCID: PMC6629904 DOI: 10.3389/fphys.2019.00883

Abstract

Theoretical cardiac electrophysiology focuses on the dynamics of the membrane and sarcoplasmic reticulum ion currents; however, passive (e.g., membrane capacitance) and quasi-active (response to small signals) properties of the cardiac sarcolemma, which are quantified by impedance, are also important in determining the behavior of cardiac tissue. Theoretically, impedance varies in the different phases of a cardiac cycle. Our goal in this study was to numerically predict and experimentally validate these phasic changes. We calculated the expected impedance signal using analytic methods (for generic ionic models) and numerical computation (for a rabbit ventricular ionic model). Cardiac impedance is dependent on the phase of the action potential, with multiple deflections caused by a sequential activation and inactivation of various membrane channels. The two main channels shaping the impedance signal are the sodium channel causing a sharp and transient drop at the onset of action potential and the inward rectifying potassium channel causing an increase in impedance during the plateau phase. This dip and dome pattern was confirmed in an

Keywords: cardiac electrophysiology; computational biology; impedance; ionic channels; membrane biophysics

References

  1. Biophys J. 1962 Jan;2:11-21 - PubMed
  2. J Physiol. 1951 Oct 29;115(2):227-36 - PubMed
  3. Biophys J. 2004 Nov;87(5):3351-71 - PubMed
  4. Heart Rhythm. 2005 Sep;2(9):940-50 - PubMed
  5. J Physiol. 2006 Feb 1;570(Pt 3):431-2 - PubMed
  6. J Cardiovasc Electrophysiol. 2006 May;17 Suppl 1:S8-S14 - PubMed
  7. Heart Rhythm. 2007 May;4(5):619-26 - PubMed
  8. Biophys J. 2008 Jan 15;94(2):392-410 - PubMed
  9. J Gen Physiol. 1939 May 20;22(5):649-70 - PubMed
  10. J Gen Physiol. 1941 Mar 20;24(4):535-49 - PubMed
  11. J Gen Physiol. 1941 Sep 20;25(1):29-51 - PubMed
  12. Circ Res. 1990 Jun;66(6):1461-73 - PubMed
  13. J Physiol. 1988 Jun;400:237-74 - PubMed
  14. J Physiol. 1988 Jun;400:275-97 - PubMed
  15. Biophys J. 1989 May;55(5):987-99 - PubMed
  16. Front Comput Neurosci. 2018 May 03;12:29 - PubMed
  17. Circ Res. 1987 Aug;61(2):271-9 - PubMed
  18. Aerosp Med. 1966 Dec;37(12):1208-12 - PubMed
  19. J Gen Physiol. 1970 Apr;55(4):497-523 - PubMed
  20. Biophys J. 1969 Oct;9(10):1206-22 - PubMed
  21. Biol Cybern. 1984;50(1):15-33 - PubMed
  22. J Physiol. 1983 Aug;341:279-307 - PubMed
  23. IEEE Trans Biomed Eng. 1978 Jul;25(4):389-92 - PubMed
  24. IEEE Trans Biomed Eng. 1982 Jul;29(7):541-6 - PubMed
  25. J Physiol. 1982 Dec;333:343-66 - PubMed

Publication Types

Grant support