Display options
Share it on

J Biol Eng. 2019 Jun 21;13:56. doi: 10.1186/s13036-019-0188-x. eCollection 2019.

Construction of an immunotoxin via site-specific conjugation of anti-Her2 IgG and engineered .

Journal of biological engineering

Byeong Sung Lee, Yumi Lee, Jisoo Park, Bo Seok Jeong, Migyeong Jo, Sang Taek Jung, Tae Hyeon Yoo

Affiliations

  1. 1Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, 16499 South Korea.
  2. 3Department of Applied Chemistry, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul, 02707 South Korea.
  3. 4Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seongbuk-gu, Seoul, 02841 South Korea.
  4. 2Department of Applied Chemistry and Biological Engineering, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, 16499 South Korea.

PMID: 31285754 PMCID: PMC6588878 DOI: 10.1186/s13036-019-0188-x

Abstract

BACKGROUND: Immunotoxins consisting of a toxin from bacteria or plants and a targeting module have been developed as potent anti-cancer therapeutics. The majority of them, especially those in preclinical or clinical testing stages, are fusion proteins of a toxin and antibody fragment. Immunotoxins based on full-length antibodies are less studied, even though the fragment crystallizable (Fc) domain plays an important role in regulating the concentration of immunoglobulin G (IgG) in the serum and in antibody-mediated immune responses against pathogens.

RESULTS: We devised a method to site-specifically conjugate IgG and another protein using a cysteine residue introduced into the IgG and a bio-orthogonally reactive unnatural amino acid incorporated into the other protein. The human epidermal growth factor receptor 2 (Her2)-targeting IgG, trastuzumab, was engineered to have an unpaired cysteine in the heavy chain, and an unnatural amino acid with the azido group was incorporated into an engineered

CONCLUSIONS: We constructed the site-specifically conjugated immunotoxin based on IgG and PE24, which induced target-specific cytotoxicity. To evaluate the molecule as a cancer therapeutic, animal studies are planned to assess tumor regression, half-life in blood, and in vivo immunogenicity. In addition, we expect that the site-specific conjugation method can be used to develop other antibody-protein conjugates for applications in therapeutics and diagnostics.

Keywords: Immunoglobulin G; Immunotoxin; Pseudomonas Exotoxin A; Site-specific conjugation; Unnatural amino acid

Conflict of interest statement

Competing interestsThe authors declare that they have no competing interests.

References

  1. Biochemistry. 1999 Dec 14;38(50):16507-13 - PubMed
  2. IUBMB Life. 1999 Nov;48(5):557-62 - PubMed
  3. J Am Chem Soc. 2002 Aug 7;124(31):9026-7 - PubMed
  4. J Am Chem Soc. 2004 Nov 24;126(46):15046-7 - PubMed
  5. Cell Mol Immunol. 2005 Apr;2(2):106-12 - PubMed
  6. Curr Opin Chem Biol. 2005 Dec;9(6):548-54 - PubMed
  7. Proc Natl Acad Sci U S A. 2006 Jun 20;103(25):9482-7 - PubMed
  8. Nat Rev Cancer. 2006 Jul;6(7):559-65 - PubMed
  9. Annu Rev Med. 2007;58:221-37 - PubMed
  10. Cancer Lett. 2007 Nov 8;257(1):124-35 - PubMed
  11. Nat Biotechnol. 2008 Aug;26(8):925-32 - PubMed
  12. Blood. 2009 Apr 16;113(16):3792-800 - PubMed
  13. Chem Biol. 2009 Mar 27;16(3):323-36 - PubMed
  14. Infect Immun. 1977 Jun;16(3):832-41 - PubMed
  15. Blood. 2009 Sep 24;114(13):2721-9 - PubMed
  16. J Mol Biol. 2010 Jan 15;395(2):361-74 - PubMed
  17. Angew Chem Int Ed Engl. 2009;48(52):9879-83 - PubMed
  18. Proc Natl Acad Sci U S A. 2011 May 31;108(22):9060-5 - PubMed
  19. Breast Cancer Res. 2011 Aug 12;13(4):215 - PubMed
  20. Proc Natl Acad Sci U S A. 2012 May 1;109(18):6898-903 - PubMed
  21. J Am Chem Soc. 2012 Jun 20;134(24):9918-21 - PubMed
  22. Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11782-7 - PubMed
  23. Curr Protoc Chem Biol. 2011;3(4):153-162 - PubMed
  24. Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16101-6 - PubMed
  25. Biochim Biophys Acta. 2014 Feb;1840(2):838-46 - PubMed
  26. Biochim Biophys Acta. 2013 Dec;1830(12):5526-34 - PubMed
  27. Toxins (Basel). 2013 Aug 21;5(8):1486-502 - PubMed
  28. MAbs. 2014 Jan-Feb;6(1):34-45 - PubMed
  29. Mol Cancer Ther. 2014 Mar;13(3):651-61 - PubMed
  30. Front Chem. 2014 Apr 01;2:15 - PubMed
  31. Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8571-6 - PubMed
  32. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8545-9 - PubMed
  33. Bioconjug Chem. 2014 Nov 19;25(11):1916-20 - PubMed
  34. Oncologist. 2015 Feb;20(2):176-85 - PubMed
  35. ACS Chem Biol. 2015 Jul 17;10(7):1648-53 - PubMed
  36. Biotechnol Adv. 2015 Nov 1;33(6 Pt 1):775-84 - PubMed
  37. Protein Eng Des Sel. 2015 Oct;28(10):385-93 - PubMed
  38. Biomol Ther (Seoul). 2015 Nov;23(6):493-509 - PubMed
  39. Bioconjug Chem. 2016 May 18;27(5):1324-31 - PubMed
  40. Chembiochem. 2016 Jun 2;17(11):981-4 - PubMed
  41. Mol Ther Oncolytics. 2016 Mar 16;3:16007 - PubMed
  42. J Biol Eng. 2016 Sep 30;10:11 - PubMed
  43. Biochim Biophys Acta Gen Subj. 2017 Nov;1861(11 Pt B):3016-3023 - PubMed
  44. Tumour Biol. 2017 Feb;39(2):1010428317692226 - PubMed
  45. Int Rev Immunol. 2017 Jul 4;36(4):207-219 - PubMed
  46. J Cancer. 2017 Sep 12;8(16):3131-3141 - PubMed
  47. MAbs. 2018 Feb/Mar;10(2):278-289 - PubMed
  48. Front Immunol. 2017 Nov 13;8:1576 - PubMed
  49. Proc Natl Acad Sci U S A. 2018 Jan 23;115(4):E733-E742 - PubMed
  50. Bioconjug Chem. 2018 Feb 21;29(2):473-485 - PubMed
  51. Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):E3501-E3508 - PubMed
  52. Pharmaceuticals (Basel). 2018 Apr 09;11(2):null - PubMed
  53. ACS Chem Biol. 2018 Aug 17;13(8):2058-2066 - PubMed
  54. Bioconjug Chem. 2018 Oct 17;29(10):3240-3244 - PubMed
  55. ACS Sens. 2018 Oct 26;3(10):2066-2070 - PubMed
  56. Drugs. 2018 Nov;78(16):1763-1767 - PubMed
  57. J Infect Dis. 1974 Nov;130 Suppl(0):S94-9 - PubMed
  58. Mol Microbiol. 1996 Aug;21(4):667-74 - PubMed

Publication Types