Display options
Share it on

Am J Transl Res. 2019 Jun 15;11(6):3761-3770. eCollection 2019.

Factors impacting technical success rate of image-guided intra-arterial therapy in rat orthotopic liver tumor model.

American journal of translational research

Hideyuki Nishiofuku, Andrea C Cortes, Joe E Ensor, Adeeb A Minhaj, Urszula Polak, Mirtha S Lopez, Ryan Kiefer, Stephen J Hunt, Kimihiko Kichikawa, Marshall E Hicks, Terence P Gade, Rony Avritscher

Affiliations

  1. Department of Radiology, Nara Medical University 840 Shijo-cho, Kashihara 634-8522, Japan.
  2. Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center Houston 77030, Texas, USA.
  3. Houston Methodist Cancer Center, Houston Methodist Research Institute Houston 77030, Texas, USA.
  4. Department of Radiology, Hospital of The University of Pennsylvania Philadelphia 19104, Pennsylvania, USA.

PMID: 31312386 PMCID: PMC6614632

Abstract

Transcatheter hepatic arterial chemoembolization (TACE) is the current standard of care for intermediate stage hepatocellular carcinoma (HCC) patients. To study the effects of TACE in the tumor immune microenvironment, an immunocompetent rat model is required. The purpose of this study was to determine factors influencing technical success during hepatic arterial catheterization in immunocompetent orthotopic rat liver models. To this end, 91 Sprague-Dawley and eighty-three F344 rats underwent transcatheter hepatic arterial embolization using a transcarotid approach and were divided into a non-tumor-bearing (n = 41) and tumor-bearing (n = 133) groups. Vascular diameters of the hepatic arterial branches were evaluated from angiographic images. Catheterization of the proper hepatic artery (PHA) was achieved in 92% of the tumor-bearing and 68.3% of the non-tumor-bearing rats. We found a strong positive association between the diameter of the PHA and animals' body weight in both groups (P < 0.005), independently of the rat's strain. Results of the logistic regression model predicting a successful catheter placement into the PHA according to the animal's weight indicate that successful PHA catheterization is likely to be achieved in tumor-bearing animals weighing ≥ 250 g and > 308 g in non-tumor-bearing rats, with a sensitivity and specificity of 91.3% and 100.0% and 96.4% and 92.3%, respectively. In conclusion, animal's body weight at the time of catheterization is the principal determinant of technical success for transcatheter arterial embolization. Familiarity with these technical factors during animal selection will improve TACE technical success rates.

Keywords: Transcatheter arterial embolization; arterial access and endovascular treatment; body weight; hepatocellular carcinoma; technical success

Conflict of interest statement

None.

References

  1. Br J Anaesth. 2000 Jul;85(1):109-17 - PubMed
  2. World J Gastroenterol. 2003 Dec;9(12):2676-80 - PubMed
  3. World J Gastroenterol. 2004 Sep 15;10(18):2637-42 - PubMed
  4. Eur Radiol. 2005 Jan;15(1):127-33 - PubMed
  5. Cardiovasc Intervent Radiol. 2006 Nov-Dec;29(6):1073-6 - PubMed
  6. Ann Surg. 2006 Jul;244(1):89-98 - PubMed
  7. Liver Int. 2007 Apr;27(3):384-92 - PubMed
  8. J Vasc Interv Radiol. 2009 Mar;20(3):410-4 - PubMed
  9. Am J Pathol. 2009 Aug;175(2):835-43 - PubMed
  10. Tumour Biol. 2012 Aug;33(4):1095-103 - PubMed
  11. Nat Methods. 2012 Jun 28;9(7):676-82 - PubMed
  12. Dig Liver Dis. 2013 Jun;45(6):450-9 - PubMed
  13. Am J Transl Res. 2013 Apr 19;5(3):269-78 - PubMed
  14. Oncol Rep. 2014 Jan;31(1):95-102 - PubMed
  15. Onco Targets Ther. 2013 Nov 05;6:1563-72 - PubMed
  16. J Vasc Interv Radiol. 2015 Aug;26(8):1229-37 - PubMed
  17. Onco Targets Ther. 2015 Nov 27;8:3539-48 - PubMed
  18. BMC Cancer. 2016 May 23;16:325 - PubMed
  19. Sci Rep. 2016 Jul 13;6:29653 - PubMed
  20. J Cancer Res Clin Oncol. 2017 Feb;143(2):199-207 - PubMed
  21. Biomaterials. 2016 Dec;109:69-77 - PubMed
  22. Med Sci Monit. 2016 Dec 02;22:4716-4728 - PubMed
  23. Lancet. 2017 Jun 24;389(10088):2492-2502 - PubMed
  24. J Vasc Interv Radiol. 2017 Jul;28(7):1043-1050.e2 - PubMed
  25. Innate Immun. 2017 Jul;23(5):482-494 - PubMed
  26. ILAR J. 2017 Jul 1;58(1):42-58 - PubMed
  27. J Anat. 2018 Jan;232(1):134-145 - PubMed
  28. J Cell Biochem. 2018 May;119(5):4050-4060 - PubMed
  29. Lancet. 2018 Mar 31;391(10127):1301-1314 - PubMed
  30. Lancet. 2018 Mar 24;391(10126):1163-1173 - PubMed
  31. Database (Oxford). 2018 Jan 1;2018: - PubMed
  32. Biochim Biophys Acta Mol Basis Dis. 2019 May 1;1865(5):869-878 - PubMed
  33. Oncol Lett. 2018 Sep;16(3):3690-3698 - PubMed
  34. Acta Anat (Basel). 1967;68(3):334-43 - PubMed
  35. Eur Surg Res. 1977;9(5):347-56 - PubMed
  36. Eur J Pharm Biopharm. 1998 Nov;46(3):243-54 - PubMed

Publication Types