Display options
Share it on

NPJ Vaccines. 2019 Jul 19;4:31. doi: 10.1038/s41541-019-0126-4. eCollection 2019.

A mosaic hemagglutinin-based influenza virus vaccine candidate protects mice from challenge with divergent H3N2 strains.

NPJ vaccines

Felix Broecker, Sean T H Liu, Nungruthai Suntronwong, Weina Sun, Mark J Bailey, Raffael Nachbagauer, Florian Krammer, Peter Palese

Affiliations

  1. 1Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY USA.
  2. 2Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
  3. 3Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA.

PMID: 31341648 PMCID: PMC6642189 DOI: 10.1038/s41541-019-0126-4

Abstract

Current seasonal influenza virus vaccines only provide limited, short-lived protection, and antigenic drift in the hemagglutinin surface glycoprotein necessitates their annual re-formulation and re-administration. To overcome these limitations, universal vaccine strategies that aim at eliciting broadly protective antibodies to conserved epitopes of the hemagglutinin show promise for protecting against diverse and drifted influenza viruses. Here a vaccination strategy that focuses antibody responses to conserved epitopes of the H3 hemagglutinin is described. The approach is based on antigenic silencing of the immunodominant major antigenic sites of an H3 protein from 2014 by replacing them with corresponding sequences of exotic avian hemagglutinins, yielding "mosaic" hemagglutinins. In mice, vaccination with inactivated viruses expressing mosaic hemagglutinins induced highly cross-reactive antibodies against the H3 stalk domain that elicited Fc-mediated effector functions in vitro. In addition, the mosaic viruses elicited head-specific antibodies with neutralizing and hemagglutination-inhibiting activity against recent H3N2 viruses in vitro. Immune sera protected mice from heterologous challenge with viruses carrying H3 proteins from 1968 and 1982, whereas immune sera generated with a seasonal vaccine did not protect. Consequently, the mosaic vaccination approach provides a promising avenue toward a universal influenza virus vaccine.

Keywords: Influenza virus; Preclinical research; Vaccines

Conflict of interest statement

Competing interestsThe Icahn School of Medicine at Mount Sinai has filed patent applications regarding influenza virus vaccines that name F.B., F.K., and P.P. as inventors. The laboratories of F.K. an

References

  1. Vaccine. 2003 May 1;21(16):1776-9 - PubMed
  2. J Comput Chem. 2004 Oct;25(13):1605-12 - PubMed
  3. PLoS Med. 2007 Aug;4(8):e247 - PubMed
  4. Bioinformatics. 2007 Nov 1;23(21):2947-8 - PubMed
  5. Nature. 2008 May 29;453(7195):615-9 - PubMed
  6. Nature. 2008 May 29;453(7195):667-71 - PubMed
  7. PLoS One. 2009 Aug 31;4(8):e6832 - PubMed
  8. Science. 2010 Aug 13;329(5993):856-61 - PubMed
  9. J Virol. 2012 May;86(10):5774-81 - PubMed
  10. Science. 2012 Sep 14;337(6100):1343-8 - PubMed
  11. PLoS One. 2012;7(8):e43603 - PubMed
  12. Hum Vaccin Immunother. 2013 Feb;9(2):405-8 - PubMed
  13. J Virol. 2013 Jun;87(12):6542-50 - PubMed
  14. N Engl J Med. 2013 May 16;368(20):1888-97 - PubMed
  15. PLoS One. 2013 Jun 05;8(6):e65919 - PubMed
  16. BMC Med. 2013 Jun 25;11:153 - PubMed
  17. J Virol. 2013 Oct;87(19):10435-46 - PubMed
  18. J Virol. 2014 Mar;88(6):3432-42 - PubMed
  19. Nat Med. 2014 Feb;20(2):143-51 - PubMed
  20. Nat Commun. 2014 Apr 10;5:3614 - PubMed
  21. J Virol. 2014 Dec;88(23):13580-92 - PubMed
  22. J Virol. 2015 Dec 30;90(6):3268-73 - PubMed
  23. J Virol. 2016 Jan 13;90(7):3789-93 - PubMed
  24. Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):E5944-E5951 - PubMed
  25. MBio. 2016 Oct 4;7(5): - PubMed
  26. Vaccine. 2017 Jan 23;35(4):513-520 - PubMed
  27. J Virol. 2017 May 26;91(12): - PubMed
  28. PLoS One. 2017 Sep 14;12(9):e0183315 - PubMed
  29. MBio. 2017 Sep 19;8(5): - PubMed
  30. Nat Commun. 2017 Oct 10;8(1):846 - PubMed
  31. Proc Natl Acad Sci U S A. 2017 Nov 21;114(47):12578-12583 - PubMed
  32. NPJ Vaccines. 2017 Sep 14;2:26 - PubMed
  33. Nat Struct Mol Biol. 2018 Feb;25(2):115-121 - PubMed
  34. Front Immunol. 2018 Jan 31;9:126 - PubMed
  35. J Vis Exp. 2018 Feb 23;(132): - PubMed
  36. J Virol. 2018 Jul 31;92(16): - PubMed
  37. Emerg Microbes Infect. 2018 Jun 20;7(1):110 - PubMed
  38. Nat Rev Dis Primers. 2018 Jun 28;4(1):3 - PubMed
  39. J Virol. 2018 Sep 26;92(20): - PubMed
  40. Curr Opin Pediatr. 2019 Feb;31(1):112-118 - PubMed
  41. J Infect Dis. 2019 Apr 8;219(Supplement_1):S62-S67 - PubMed
  42. Nat Rev Immunol. 2019 Jun;19(6):383-397 - PubMed
  43. Emerg Microbes Infect. 2019;8(1):155-168 - PubMed
  44. J Virol. 2019 May 29;93(12): - PubMed
  45. Nature. 1981 Jan 29;289(5796):373-8 - PubMed
  46. Nature. 1981 Apr 23;290(5808):713-7 - PubMed
  47. Nature. 1981 Jan 29;289(5796):366-73 - PubMed
  48. Clin Diagn Lab Immunol. 1998 Jan;5(1):114-7 - PubMed

Publication Types

Grant support