Display options
Share it on

Transl Vis Sci Technol. 2019 Jul 26;8(4):10. doi: 10.1167/tvst.8.4.10. eCollection 2019 Jul.

Quantification of Double Stranded DNA Breaks and Telomere Length as Proxies for Corneal Damage and Replicative Stress in Human Keratoconus Corneas.

Translational vision science & technology

Robert P L Wisse, Jonas J W Kuiper, Timothy R D Radstake, Jasper C A Broen

Affiliations

  1. Department of Ophthalmology, University Medical Center Utrecht, The Netherlands.
  2. Ophthalmo-Immunology group, Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, The Netherlands.
  3. Department of Rheumatology & Clinical Immunology, Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, The Netherlands.

PMID: 31372311 PMCID: PMC6660185 DOI: 10.1167/tvst.8.4.10

Abstract

PURPOSE: The pathogenesis of keratoconus (KC) is multifactorial, and associated with oxidative stress and subsequent DNA damage. We investigate differences in DNA damage and replicative stress in patients with KC, and in healthy and diseased controls.

METHODS: We obtained 64 corneal buttons from 27 patients with KC after corneal transplant surgery, 21 with a decompensated graft (DG), and 16 healthy controls (HC). The amount of intact Alu elements per genome copy as measured by quantitative polymerase chain reaction (qPCR) was used to quantify intact DNA. Telomere length was measured as a proxy for replicative stress. In addition, telomerase reverse transcriptase (

RESULTS: Mean (± standard deviation [SD]) DNA damage was similar between the KC (5.56 ± 14.08), DG (3.16 ± 8.22), and HC (3.51 ± 6.66) groups (

CONCLUSIONS: Based on these findings, differences in actual corneal DNA damage in KC could not be identified, and the longer telomere length in KC did not support replicative stress as a major etiologic factor in the pathogenesis of KC. Future longitudinal investigations on KC etiology should assess progressively early cases to better comprehend the cellular and molecular processes preceding the archetypical morphologic changes.

TRANSLATIONAL RELEVANCE: The standard treatment for progressive keratoconus promotes the crosslinking of collagen fibers through ultraviolet radiation and the subsequent formation of reactive oxygen species. Our study helps to underline the safety of this treatment approach.

Keywords: Alu elements; DNA damage; hTERT; keratoconus; telomere length

References

  1. Mutat Res. 1999 Apr 9;433(3):147-57 - PubMed
  2. Br J Ophthalmol. 2000 Aug;84(8):834-6 - PubMed
  3. Invest Ophthalmol Vis Sci. 2001 Sep;42(10):2293-6 - PubMed
  4. J Histochem Cytochem. 2002 Mar;50(3):341-51 - PubMed
  5. Cornea. 2004 Aug;23(6):560-4 - PubMed
  6. Invest Ophthalmol Vis Sci. 2005 Mar;46(3):823-32 - PubMed
  7. Invest Ophthalmol Vis Sci. 2005 Apr;46(4):1256-63 - PubMed
  8. Curr Opin Cell Biol. 2006 Jun;18(3):254-60 - PubMed
  9. Biotechniques. 2008 May;44(6):807-9 - PubMed
  10. Cornea. 2009 May;28(4):426-33 - PubMed
  11. Methods Mol Biol. 2011;687:221-9 - PubMed
  12. PLoS One. 2013 Jun 03;8(6):e65188 - PubMed
  13. Int J Mol Sci. 2013 Sep 23;14(9):19294-308 - PubMed
  14. Cornea. 2014 Mar;33(3):313-6 - PubMed
  15. Invest Ophthalmol Vis Sci. 2014 Mar 13;55(3):1580-7 - PubMed
  16. Sci Rep. 2014 Apr 09;4:4608 - PubMed
  17. J Cataract Refract Surg. 2015 Feb;41(2):446-59 - PubMed
  18. PLoS Genet. 2015 Mar 11;11(3):e1005016 - PubMed
  19. Prog Retin Eye Res. 2015 Sep;48:203-25 - PubMed
  20. Surv Ophthalmol. 2015 Sep-Oct;60(5):459-80 - PubMed
  21. Ocul Surf. 2015 Oct;13(4):272-83 - PubMed
  22. PLoS One. 2016 Sep 09;11(9):e0162212 - PubMed
  23. Aging Cell. 2017 Apr;16(2):422-427 - PubMed
  24. Cornea. 1993 Mar;12(2):146-54 - PubMed
  25. Mutat Res. 1997 Oct;385(1):31-9 - PubMed
  26. Surv Ophthalmol. 1998 Jan-Feb;42(4):297-319 - PubMed

Publication Types