Display options
Share it on

IUCrJ. 2019 May 08;6:558-571. doi: 10.1107/S2052252519003014. eCollection 2019 Jul 01.

X-ray diffraction data as a source of the vibrational free-energy contribution in polymorphic systems.

IUCrJ

Phillip Miguel Kofoed, Anna A Hoser, Frederik Diness, Silvia C Capelli, Anders Østergaard Madsen

Affiliations

  1. Department of Chemistry, University of Copenhagen, Copenhagen Denmark.
  2. Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, ?wirki i Wigury 101, Warszawa 02-089, Poland.
  3. ISIS Neutrons and Muons Facility, Science and Technical Facility Council, Rutherford Appleton Laboratory, Harwell Science Campus, Didcot OX11 OQX, UK.
  4. Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark.

PMID: 31316801 PMCID: PMC6608639 DOI: 10.1107/S2052252519003014

Abstract

In this contribution we attempt to answer a general question: can X-ray diffraction data combined with theoretical computations be a source of information about the thermodynamic properties of a given system? Newly collected sets of high-quality multi-temperature single-crystal X-ray diffraction data and complementary periodic DFT calculations of vibrational frequencies and normal mode vectors at the Γ point on the yellow and white polymorphs of di-methyl 3,6-di-chloro-2,5-di-hydroxy-terephthalate are combined using two different approaches, aiming to obtain thermodynamic properties for the two compounds. The first approach uses low-frequency normal modes extracted from multi-temperature X-ray diffraction data (normal coordinate analysis), while the other uses DFT-calculated low-frequency normal mode in the refinement of the same data (normal mode refinement). Thermodynamic data from the literature [Yang

Keywords: ADPs refinement; DFT calculations; conformational polymorphs; lattice dynamical models; vibrational contributions to free energy

References

  1. Acta Crystallogr A. 2000 Sep;56 (Pt 5):403-12 - PubMed
  2. Acta Crystallogr A. 2000 Sep;56 (Pt 5):413-24 - PubMed
  3. Acta Crystallogr A. 2000 Sep;56 (Pt 5):425-35 - PubMed
  4. J Phys Chem A. 2006 Oct 19;110(41):11695-703 - PubMed
  5. Angew Chem Int Ed Engl. 2007;46(45):8609-13 - PubMed
  6. Acta Crystallogr A. 2010 May;66(Pt 3):362-71 - PubMed
  7. J Phys Chem A. 2011 Jul 7;115(26):7794-804 - PubMed
  8. Acta Crystallogr A. 2012 Jan;68(Pt 1):139-47 - PubMed
  9. J Phys Chem A. 2012 Aug 2;116(30):8092-9 - PubMed
  10. J Org Chem. 2012 Dec 7;77(23):10824-34 - PubMed
  11. J Phys Chem A. 2013 Jan 24;117(3):633-41 - PubMed
  12. Angew Chem Int Ed Engl. 2013 Jun 24;52(26):6629-32 - PubMed
  13. J Phys Chem A. 2013 Aug 22;117(33):8001-9 - PubMed
  14. Chemistry. 2014 Mar 10;20(11):3218-24 - PubMed
  15. Phys Rev Lett. 2014 Aug 1;113(5):055701 - PubMed
  16. J Phys Chem A. 2014 Oct 30;118(43):9951-9 - PubMed
  17. Chem Commun (Camb). 2015 Mar 4;51(18):3735-8 - PubMed
  18. Chem Soc Rev. 2015 Dec 7;44(23):8619-35 - PubMed
  19. J Chem Theory Comput. 2007 Jan;3(1):232-47 - PubMed
  20. Chem Commun (Camb). 2016 Jan 31;52(9):1820-3 - PubMed
  21. IUCrJ. 2016 Jan 01;3(Pt 1):61-70 - PubMed
  22. Acta Crystallogr A Found Adv. 2016 Mar;72(Pt 2):206-14 - PubMed
  23. J Phys Chem A. 2016 Mar 31;120(12):2022-34 - PubMed
  24. Acta Crystallogr B Struct Sci Cryst Eng Mater. 2016 Aug 1;72(Pt 4):514-29 - PubMed
  25. Phys Chem Chem Phys. 2016 Nov 16;18(45):31132-31143 - PubMed
  26. Acta Crystallogr A Found Adv. 2017 Mar 1;73(Pt 2):102-114 - PubMed
  27. Chem Commun (Camb). 2017 Mar 28;53(26):3781-3784 - PubMed
  28. J Phys Chem Lett. 2017 Sep 7;8(17):4319-4324 - PubMed
  29. Chem Sci. 2017 Jun 1;8(6):4159-4176 - PubMed
  30. Chemistry. 2018 Aug 1;24(43):10881-10905 - PubMed

Publication Types