Display options
Share it on

Front Plant Sci. 2019 Jul 24;10:923. doi: 10.3389/fpls.2019.00923. eCollection 2019.

Hydroponic Solutions for Soilless Production Systems: Issues and Opportunities in a Smart Agriculture Perspective.

Frontiers in plant science

Paolo Sambo, Carlo Nicoletto, Andrea Giro, Youry Pii, Fabio Valentinuzzi, Tanja Mimmo, Paolo Lugli, Guido Orzes, Fabrizio Mazzetto, Stefania Astolfi, Roberto Terzano, Stefano Cesco

Affiliations

  1. Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy.
  2. Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy.
  3. Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Viterbo, Italy.
  4. Department of Soil, Plant and Food Sciences, University of Bari, Bari, Italy.

PMID: 31396245 PMCID: PMC6668597 DOI: 10.3389/fpls.2019.00923

Abstract

Soilless cultivation represent a valid opportunity for the agricultural production sector, especially in areas characterized by severe soil degradation and limited water availability. Furthermore, this agronomic practice embodies a favorable response toward an environment-friendly agriculture and a promising tool in the vision of a general challenge in terms of food security. This review aims therefore at unraveling limitations and opportunities of hydroponic solutions used in soilless cropping systems focusing on the plant mineral nutrition process. In particular, this review provides information (1) on the processes and mechanisms occurring in the hydroponic solutions that ensure an adequate nutrient concentration and thus an optimal nutrient acquisition without leading to nutritional disorders influencing ultimately also crop quality (e.g., solubilization/precipitation of nutrients/elements in the hydroponic solution, substrate specificity in the nutrient uptake process, nutrient competition/antagonism and interactions among nutrients); (2) on new emerging technologies that might improve the management of soilless cropping systems such as the use of nanoparticles and beneficial microorganism like plant growth-promoting rhizobacteria (PGPRs); (3) on tools (multi-element sensors and interpretation algorithms based on machine learning logics to analyze such data) that might be exploited in a smart agriculture approach to monitor the availability of nutrients/elements in the hydroponic solution and to modify its composition in

Keywords: biofortification; nanoparticles; nutrient acquisition; nutrient interaction; plant growth-promoting rhizobacteria; sensors; smart agriculture

References

  1. Plant Physiol. 1999 May;120(1):283-92 - PubMed
  2. Plant Mol Biol. 1999 May;40(1):37-44 - PubMed
  3. Can J Microbiol. 2000 Mar;46(3):229-36 - PubMed
  4. J Exp Bot. 2001 Jan;52(354):113-21 - PubMed
  5. Plant J. 2002 Feb;29(4):475-86 - PubMed
  6. Nature. 2002 Aug 8;418(6898):671-7 - PubMed
  7. Plant Physiol. 2002 Dec;130(4):1951-7 - PubMed
  8. Environ Int. 2003 Apr;29(1):33-7 - PubMed
  9. Plant Physiol. 2003 Nov;133(3):1102-10 - PubMed
  10. Ecotoxicol Environ Saf. 2005 Mar;60(3):324-49 - PubMed
  11. Plant Physiol. 2007 Mar;143(3):1231-41 - PubMed
  12. Environ Pollut. 2007 Nov;150(2):243-50 - PubMed
  13. FEBS Lett. 2007 May 25;581(12):2348-56 - PubMed
  14. J Agric Food Chem. 2008 Mar 26;56(6):1810-7 - PubMed
  15. Biol Trace Elem Res. 2008 Oct;125(1):59-71 - PubMed
  16. Mol Genet Genomics. 2008 Nov;280(5):437-52 - PubMed
  17. Plant Biotechnol J. 2009 Jan;7(1):106-17 - PubMed
  18. Plant J. 2009 May;58(4):568-77 - PubMed
  19. Planta. 2009 Jun;230(1):85-94 - PubMed
  20. Annu Rev Microbiol. 2009;63:541-56 - PubMed
  21. Annu Rev Plant Biol. 2010;61:535-59 - PubMed
  22. J Exp Bot. 2010 May;61(9):2303-15 - PubMed
  23. Plant Physiol Biochem. 2011 Feb;49(2):168-77 - PubMed
  24. J Exp Bot. 2012 Feb;63(3):1241-50 - PubMed
  25. Plant Physiol Biochem. 2012 Jul;56:14-23 - PubMed
  26. Mol Biol Rep. 2012 Aug;39(8):8465-73 - PubMed
  27. Sensors (Basel). 2012 Oct 01;12(10):13349-92 - PubMed
  28. Biol Trace Elem Res. 2013 Jun;152(3):403-10 - PubMed
  29. New Phytol. 2013 Jun;198(4):1096-107 - PubMed
  30. Plant Physiol Biochem. 2013 Sep;70:455-61 - PubMed
  31. J Agric Food Chem. 2013 Nov 6;61(44):10542-54 - PubMed
  32. Food Chem. 2014 Mar 15;147:92-7 - PubMed
  33. Scientifica (Cairo). 2012;2012:963401 - PubMed
  34. Environ Sci Technol. 2014;48(5):2526-40 - PubMed
  35. Physiol Plant. 2014 Dec;152(4):646-59 - PubMed
  36. J Basic Microbiol. 2014 Jul;54 Suppl 1:S115-24 - PubMed
  37. Mol Cells. 2014 Aug;37(8):575-84 - PubMed
  38. Food Chem. 2014 Dec 15;165:578-86 - PubMed
  39. Environ Toxicol Chem. 2014 Nov;33(11):2429-37 - PubMed
  40. Biotechnol Appl Biochem. 2015 Sep-Oct;62(5):663-8 - PubMed
  41. Sci Total Environ. 2015 May 1;514:131-9 - PubMed
  42. J Sci Food Agric. 2016 Feb;96(3):751-6 - PubMed
  43. Front Plant Sci. 2015 Apr 21;6:280 - PubMed
  44. Int J Environ Res Public Health. 2015 Jun 16;12(6):6879-91 - PubMed
  45. J Exp Bot. 2015 Oct;66(20):6483-95 - PubMed
  46. BMC Genomics. 2016 Jan 07;17:35 - PubMed
  47. Adv Appl Microbiol. 2016;95:1-67 - PubMed
  48. Plant Physiol Biochem. 2017 Jan;110:194-209 - PubMed
  49. J Sci Food Agric. 2017 Mar;97(5):1552-1560 - PubMed
  50. Food Chem. 2016 Dec 15;213:149-156 - PubMed
  51. Sci Rep. 2016 Aug 17;6:31662 - PubMed
  52. Plant Physiol Biochem. 2017 Jan;110:2-12 - PubMed
  53. Front Plant Sci. 2016 Oct 18;7:1553 - PubMed
  54. New Phytol. 2017 Mar;213(4):1582-1596 - PubMed
  55. PLoS One. 2017 May 9;12(5):e0177041 - PubMed
  56. Front Plant Sci. 2017 Aug 03;8:1365 - PubMed
  57. Front Plant Sci. 2017 Nov 06;8:1887 - PubMed
  58. J Food Sci Technol. 2018 Jan;55(1):366-375 - PubMed
  59. J Exp Bot. 2019 Feb 20;70(4):1313-1324 - PubMed
  60. Front Plant Sci. 2019 May 22;10:675 - PubMed

Publication Types