Display options
Share it on

Beilstein J Org Chem. 2019 Jun 26;15:1407-1415. doi: 10.3762/bjoc.15.140. eCollection 2019.

Reversible end-to-end assembly of selectively functionalized gold nanorods by light-responsive arylazopyrazole-cyclodextrin interaction.

Beilstein journal of organic chemistry

Maximilian Niehues, Patricia Tegeder, Bart Jan Ravoo

Affiliations

  1. Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, D-48149, Germany.

PMID: 31293690 PMCID: PMC6604721 DOI: 10.3762/bjoc.15.140

Abstract

We propose a two-step ligand exchange for the selective end-functionalization of gold nanorods (AuNR) by thiolated cyclodextrin (CD) host molecules. As a result of the complete removal of the precursor capping agent cetyltrimethylammonium bromide (CTAB) by a tetraethylene glycol derivative, competitive binding to the host cavity was prevented, and reversible, light-responsive assembly and disassembly of the AuNR could be induced by host-guest interaction of CD on the nanorods and a photoswitchable arylazopyrazole cross-linker in aqueous solution. The end-to-end assembly of AuNR could be effectively controlled by irradiation with UV and visible light, respectively, over four cycles. By the introduction of AAP, previous disassembly limitations based on the photostationary states of azobenzenes could be solved. The combination photoresponsive interaction and selectively end-functionalized nanoparticles shows significant potential in the reversible self-assembly of inorganic-organic hybrid nanomaterials.

Keywords: cyclodextrins; gold nanorods; host–guest chemistry; light-responsive materials; molecular switches; self-assembly

References

  1. Chem Soc Rev. 2006 Mar;35(3):209-17 - PubMed
  2. Annu Rev Phys Chem. 2007;58:267-97 - PubMed
  3. Langmuir. 2009 Aug 4;25(15):8442-6 - PubMed
  4. Chem Commun (Camb). 2010 Feb 28;46(8):1332-4 - PubMed
  5. Science. 2010 Jul 9;329(5988):197-200 - PubMed
  6. Angew Chem Int Ed Engl. 2010 Dec 3;49(49):9397-400 - PubMed
  7. Nano Lett. 2011 Jan 12;11(1):273-8 - PubMed
  8. Angew Chem Int Ed Engl. 2011 Jun 14;50(25):5704-7 - PubMed
  9. Nanomedicine (Lond). 2011 Jun;6(4):715-28 - PubMed
  10. Angew Chem Int Ed Engl. 2011 Oct 4;50(41):9747-51 - PubMed
  11. Chem Soc Rev. 2012 Mar 7;41(5):1809-25 - PubMed
  12. Small. 2012 Apr 10;8(7):1013-20 - PubMed
  13. Chem Soc Rev. 2013 Apr 7;42(7):2679-724 - PubMed
  14. Nanoscale. 2013 Jun 21;5(12):5299-302 - PubMed
  15. Nat Commun. 2013;4:2689 - PubMed
  16. Adv Mater. 2014 Feb;26(7):1076-80 - PubMed
  17. Chem Soc Rev. 2014 Jun 7;43(11):3823-34 - PubMed
  18. Chemistry. 2014 Apr 22;20(17):4966-73 - PubMed
  19. J Am Chem Soc. 2014 Aug 27;136(34):11878-81 - PubMed
  20. Science. 2014 Oct 3;346(6205):1247390 - PubMed
  21. J Am Chem Soc. 2016 Mar 9;138(9):2989-92 - PubMed
  22. J Am Chem Soc. 2016 Apr 6;138(13):4547-54 - PubMed
  23. Chem Commun (Camb). 2016 Dec 20;53(1):240-243 - PubMed
  24. Angew Chem Int Ed Engl. 2017 Feb 13;56(8):2176-2182 - PubMed
  25. Chem Commun (Camb). 2017 Apr 20;53(33):4577-4580 - PubMed
  26. Chem Commun (Camb). 2017 Aug 17;53(67):9296-9299 - PubMed
  27. Adv Mater. 2017 Nov;29(42): - PubMed
  28. Chem Commun (Camb). 2017 Nov 16;53(92):12450-12453 - PubMed
  29. Chemistry. 2018 Apr 3;24(19):4741-4748 - PubMed
  30. Small. 2018 Apr;14(16):e1704287 - PubMed

Publication Types