Display options
Share it on

ACS Catal. 2019 Aug 02;9(8):6766-6782. doi: 10.1021/acscatal.9b00963. Epub 2019 Jun 18.

Redox Cofactor Rotates during Its Stepwise Decarboxylation: Molecular Mechanism of Conversion of Coproheme to Heme .

ACS catalysis

Lisa Milazzo, Thomas Gabler, Dominic Pühringer, Zuzana Jandova, Daniel Maresch, Hanna Michlits, Vera Pfanzagl, Kristina Djinović-Carugo, Chris Oostenbrink, Paul G Furtmüller, Christian Obinger, Giulietta Smulevich, Stefan Hofbauer

Affiliations

  1. Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy.
  2. Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria.
  3. Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria.
  4. Department of Material Sciences and Process Engineering, Institute of Molecular Modeling and Simulation, BOKU-University of Natural Resources and Life Sciences, A-1190 Vienna, Austria.
  5. Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia.

PMID: 31423350 PMCID: PMC6691569 DOI: 10.1021/acscatal.9b00963

Abstract

Coproheme decarboxylase (ChdC) catalyzes the last step in the heme biosynthesis pathway of monoderm bacteria with coproheme acting both as redox cofactor and substrate. Hydrogen peroxide mediates the stepwise decarboxylation of propionates 2 and 4 of coproheme. Here we present the crystal structures of coproheme-loaded ChdC from

Conflict of interest statement

The authors declare no competing financial interest.

References

  1. J Biol Inorg Chem. 2000 Apr;5(2):227-35 - PubMed
  2. Biochemistry. 2001 Sep 18;40(37):11013-21 - PubMed
  3. IUBMB Life. 2003 Aug;55(8):459-66 - PubMed
  4. J Biol Chem. 2004 Apr 23;279(17):18054-62 - PubMed
  5. J Inorg Biochem. 2008 Feb;102(2):293-302 - PubMed
  6. J Biol Inorg Chem. 2010 Aug;15(6):879-88 - PubMed
  7. J Struct Biol. 2010 Dec;172(3):331-42 - PubMed
  8. Biochemistry. 1990 Mar 13;29(10):2586-92 - PubMed
  9. Chembiochem. 2011 Nov 25;12(17):2577-86 - PubMed
  10. Biochemistry. 2012 Aug 21;51(33):6595-608 - PubMed
  11. Biophys J. 2013 Apr 16;104(8):1731-9 - PubMed
  12. Protein Sci. 2013 Sep;22(9):1183-95 - PubMed
  13. J Inorg Biochem. 2014 Jun;135:10-9 - PubMed
  14. Biochemistry. 1989 Jun 13;28(12):5058-64 - PubMed
  15. Arch Biochem Biophys. 2015 May 15;574:36-48 - PubMed
  16. Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):2210-5 - PubMed
  17. Arch Biochem Biophys. 2015 May 15;574:1-2 - PubMed
  18. Mol Microbiol. 2015 Aug;97(3):472-87 - PubMed
  19. Biochemistry. 2015 Jul 7;54(26):4022-32 - PubMed
  20. FEBS J. 2015 Nov;282(21):4218-41 - PubMed
  21. Biochem J. 2016 Nov 1;473(21):3997-4009 - PubMed
  22. Biochemistry. 2016 Sep 27;55(38):5398-412 - PubMed
  23. FEBS J. 2016 Dec;283(23):4386-4401 - PubMed
  24. J Am Chem Soc. 2017 Feb 8;139(5):1900-1911 - PubMed
  25. Biochemistry. 2017 Jan 10;56(1):189-201 - PubMed
  26. Microbiol Mol Biol Rev. 2017 Jan 25;81(1): - PubMed
  27. Arch Biochem Biophys. 2018 Feb 15;640:27-36 - PubMed
  28. J Biol Chem. 2018 Mar 16;293(11):3989-3999 - PubMed
  29. Biochemistry. 2018 Apr 3;57(13):2044-2057 - PubMed
  30. J Inorg Biochem. 2019 Jun;195:61-70 - PubMed
  31. Nature. 1982 Dec 2;300(5891):458-60 - PubMed
  32. J Biol Chem. 1984 Apr 25;259(8):4878-84 - PubMed

Publication Types