Display options
Share it on

Sci Adv. 2019 Aug 16;5(8):eaax1325. doi: 10.1126/sciadv.aax1325. eCollection 2019 Aug.

Ultrahigh thermal isolation across heterogeneously layered two-dimensional materials.

Science advances

Sam Vaziri, Eilam Yalon, Miguel Muñoz Rojo, Saurabh V Suryavanshi, Huairuo Zhang, Connor J McClellan, Connor S Bailey, Kirby K H Smithe, Alexander J Gabourie, Victoria Chen, Sanchit Deshmukh, Leonid Bendersky, Albert V Davydov, Eric Pop

Affiliations

  1. Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA.
  2. Theiss Research Inc., La Jolla, CA 92037, USA.
  3. Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, MA 20899, USA.
  4. Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
  5. Precourt Institute for Energy, Stanford University, Stanford, CA 94305, USA.

PMID: 31453337 PMCID: PMC6697438 DOI: 10.1126/sciadv.aax1325

Abstract

Heterogeneous integration of nanomaterials has enabled advanced electronics and photonics applications. However, similar progress has been challenging for thermal applications, in part due to shorter wavelengths of heat carriers (phonons) compared to electrons and photons. Here, we demonstrate unusually high thermal isolation across ultrathin heterostructures, achieved by layering atomically thin two-dimensional (2D) materials. We realize artificial stacks of monolayer graphene, MoS

References

  1. Science. 2004 Feb 13;303(5660):989-90 - PubMed
  2. Science. 2007 Jan 19;315(5810):351-3 - PubMed
  3. Science. 1994 Apr 22;264(5158):553-6 - PubMed
  4. Nat Nanotechnol. 2008 Apr;3(4):210-5 - PubMed
  5. Nano Lett. 2009 May;9(5):1883-8 - PubMed
  6. Nano Lett. 2010 Apr 14;10(4):1120-4 - PubMed
  7. Rev Sci Instrum. 2010 Jul;81(7):073701 - PubMed
  8. J Phys Condens Matter. 2011 Feb 2;23(4):045009 - PubMed
  9. Nat Mater. 2012 Jan 10;11(3):203-7 - PubMed
  10. Science. 2012 Feb 24;335(6071):947-50 - PubMed
  11. Nat Commun. 2012;3:1024 - PubMed
  12. Nature. 2012 Dec 13;492(7428):174-6 - PubMed
  13. Nano Lett. 2013 Apr 10;13(4):1564-71 - PubMed
  14. Nat Nanotechnol. 2013 Apr;8(4):235-46 - PubMed
  15. Nanotechnology. 2013 Nov 1;24(43):435705 - PubMed
  16. Nature. 2013 Nov 14;503(7475):209-17 - PubMed
  17. Nano Lett. 2014 Aug 13;14(8):4592-7 - PubMed
  18. Nat Nanotechnol. 2014 Sep;9(9):682-6 - PubMed
  19. ACS Nano. 2014 Sep 23;8(9):9649-56 - PubMed
  20. Chem Soc Rev. 2015 May 7;44(9):2757-85 - PubMed
  21. Sci Rep. 2015 Oct 14;5:15070 - PubMed
  22. Science. 2016 Jul 29;353(6298):aac9439 - PubMed
  23. Nano Lett. 2017 Mar 8;17(3):1978-1986 - PubMed
  24. Sci Rep. 2017 Mar 06;7:43886 - PubMed
  25. Nano Lett. 2017 Jun 14;17(6):3429-3433 - PubMed
  26. Sci Adv. 2017 Aug 04;3(8):e1700027 - PubMed
  27. ACS Appl Mater Interfaces. 2017 Dec 13;9(49):43013-43020 - PubMed
  28. ACS Nano. 2017 Nov 28;11(11):11714-11723 - PubMed
  29. Phys Rev Lett. 2018 Feb 2;120(5):055902 - PubMed
  30. ACS Appl Mater Interfaces. 2018 Jul 25;10(29):24892-24898 - PubMed
  31. Science. 2018 Aug 10;361(6402):579-581 - PubMed
  32. Nano Lett. 2019 Apr 10;19(4):2434-2442 - PubMed
  33. Phys Rev B Condens Matter. 1990 Jul 15;42(2):1104-1111 - PubMed

Publication Types