Display options
Share it on

Front Endocrinol (Lausanne). 2019 Aug 13;10:508. doi: 10.3389/fendo.2019.00508. eCollection 2019.

Novel Personalized Dietary Treatment for Autism Based on the Gut-Immune-Endocrine-Brain Axis.

Frontiers in endocrinology

Ceymi Doenyas

Affiliations

  1. Research Center for Translational Medicine, KoƧ University, Istanbul, Turkey.

PMID: 31456745 PMCID: PMC6700238 DOI: 10.3389/fendo.2019.00508

Abstract

Autism spectrum disorder (ASD) is a neurodevelopmental condition manifesting with impaired social interaction and communication, and restricted and repetitive behaviors and interests. In this perspective article, a more comprehensive approach than the gut-brain axis, hereby termed the "gut-immune-endocrine-brain" axis, is taken, based on which a personalized treatment plan for ASD is presented. ASD has no known etiology or cure, making desperate parents willing to try any treatment that worked for an individual with ASD, without much regard for its effectiveness, safety or side effects. This has been the case for restrictive dietary interventions as gluten-free/casein-free and ketogenic diets and recently, probiotics have emerged as the new such fad. One of the concerns about these dietary and probiotic treatments is their non-specificity: they may not be effective for all individuals with ASD, not all probiotic strains may have the beneficial qualities advertised indiscriminately for probiotics, and strains conferring benefits in one condition may not be probiotic in another. Not all children with ASD show immune reactivity to dietary proteins in wheat and milk, and wheat and milk may not be the only dietary elements to which reactivity is exhibited, where dietary aquaporins that resemble human aquaporins may elicit antibody reactivity in genetically susceptible individuals, which may include individuals with ASD. These observations are utilized to formulate a three-step plan to create effective, targeted, personalized treatments with as few side effects as possible, enabled by a systems approach connecting the various findings for dietary, immune, and neuroautoimmune reactivity in individuals with ASD.

Keywords: autism; autism spectrum disorder; diet; endocrine; immune; personalized

References

  1. J Neuroimmunol. 2002 Aug;129(1-2):168-77 - PubMed
  2. Nutr Neurosci. 2002 Sep;5(4):251-61 - PubMed
  3. Expert Opin Ther Targets. 2002 Apr;6(2):175-83 - PubMed
  4. Neuropsychobiology. 2002;46(2):76-84 - PubMed
  5. Nutr Neurosci. 2003 Feb;6(1):19-28 - PubMed
  6. J Child Neurol. 2003 Feb;18(2):113-8 - PubMed
  7. Nutr Neurosci. 2004 Jun;7(3):151-61 - PubMed
  8. Med Hypotheses. 2005;64(2):312-5 - PubMed
  9. Autism. 2005 Jul;9(3):290-8 - PubMed
  10. J Autism Dev Disord. 2006 Apr;36(3):413-20 - PubMed
  11. J Leukoc Biol. 2006 Jul;80(1):1-15 - PubMed
  12. J Toxicol Environ Health A. 2007 Apr 15;70(8):715-21 - PubMed
  13. Environ Health Perspect. 2007 Oct;115(10):1482-9 - PubMed
  14. J Neurol Sci. 2009 May 15;280(1-2):101-8 - PubMed
  15. Ann Clin Psychiatry. 2009 Oct-Dec;21(4):205-11 - PubMed
  16. Tidsskr Nor Laegeforen. 1991 Feb 28;111(6):704-7 - PubMed
  17. J Toxicol. 2009;2009:532640 - PubMed
  18. J Autism Dev Disord. 2010 Sep;40(9):1131-8 - PubMed
  19. Nutr Neurosci. 2010 Apr;13(2):87-100 - PubMed
  20. BMC Gastroenterol. 2011 Mar 16;11:22 - PubMed
  21. Arch Gen Psychiatry. 2011 Nov;68(11):1095-102 - PubMed
  22. Nutr Neurosci. 2012 Mar;15(2):85-91 - PubMed
  23. Science. 2012 Jun 8;336(6086):1262-7 - PubMed
  24. Gastroenterol Res Pract. 2012;2012:872716 - PubMed
  25. PLoS One. 2013 Jun 05;8(6):e65021 - PubMed
  26. Front Integr Neurosci. 2013 Oct 07;7:70 - PubMed
  27. Cell. 2013 Dec 19;155(7):1451-63 - PubMed
  28. JAMA. 2014 May 7;311(17):1770-7 - PubMed
  29. J Neurosci. 2014 Nov 12;34(46):15490-6 - PubMed
  30. Physiol Behav. 2015 Jan;138:179-87 - PubMed
  31. J Autism Dev Disord. 2016 Jan;46(1):205-220 - PubMed
  32. Cell. 2016 Jun 16;165(7):1762-1775 - PubMed
  33. Neurochem Int. 2016 Oct 27;:null - PubMed
  34. Nutr Neurosci. 2018 Nov;21(9):676-681 - PubMed
  35. Nutr Neurosci. 2019 Feb;22(2):132-144 - PubMed
  36. Metab Brain Dis. 2017 Dec;32(6):1935-1941 - PubMed
  37. Nutrients. 2017 Nov 02;9(11):null - PubMed
  38. Brain Res. 2018 Aug 15;1693(Pt B):214-217 - PubMed
  39. Physiol Behav. 2018 May 1;188:205-211 - PubMed
  40. Nutrients. 2018 Mar 17;10(3):null - PubMed
  41. Brain Behav Immun. 2018 Oct;73:310-319 - PubMed
  42. Physiol Behav. 2018 Oct 1;194:577-582 - PubMed
  43. Microbiome. 2018 Aug 2;6(1):133 - PubMed
  44. Cell. 2018 Sep 6;174(6):1388-1405.e21 - PubMed
  45. Neuron. 2019 Jan 16;101(2):246-259.e6 - PubMed
  46. Dev Psychobiol. 2019 Jul;61(5):752-771 - PubMed
  47. Immunol Res. 2019 Feb;67(1):12-20 - PubMed
  48. PLoS One. 2019 Jan 9;14(1):e0210064 - PubMed
  49. Foods. 2019 Mar 09;8(3):null - PubMed
  50. Neuron. 2019 Mar 20;101(6):998-1002 - PubMed
  51. Front Microbiol. 2019 Mar 12;10:424 - PubMed
  52. Proc Natl Acad Sci U S A. 2019 May 7;116(19):9644-9651 - PubMed
  53. Front Endocrinol (Lausanne). 2019 Apr 16;10:247 - PubMed
  54. Cell. 2019 May 30;177(6):1600-1618.e17 - PubMed
  55. Acta Paediatr. 1996 Sep;85(9):1076-9 - PubMed
  56. Toxicol Ind Health. 1998 Nov-Dec;14(6):799-811 - PubMed

Publication Types