Display options
Share it on

ACS Omega. 2018 Dec 03;3(12):16465-16471. doi: 10.1021/acsomega.8b02551. eCollection 2018 Dec 31.

Effective Suppression of the Polysulfide Shuttle Effect in Lithium-Sulfur Batteries by Implementing rGO-PEDOT:PSS-Coated Separators via Air-Controlled Electrospray.

ACS omega

Jin Hong Lee, Jisoo Kang, Seung-Wan Kim, Willy Halim, Margaret W Frey, Yong Lak Joo

Affiliations

  1. Robert Frederick Smith School of Chemical and Biomolecular Engineering and Department of Fiber Science and Apparel Design, Cornell University, Ithaca, New York 14853, United States.

PMID: 31458281 PMCID: PMC6644160 DOI: 10.1021/acsomega.8b02551

Abstract

Lithium-sulfur (Li-S) batteries have been earning significant attention because of their high energy density and cost efficiency. Albeit these outstanding qualities, the polysulfide shuttling effect and low electrical conductivity of the sulfur active material in this battery chemistry results in poor cycling performance. In an attempt to overcome these problems, a hybrid structure of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) and reduced graphene oxide was developed and coated on the surface of a conventional separator using air-controlled electrospray. Implementing these coated separators in Li-S batteries led to lower polarization and stymied the polysulfide shuttling effect through the combining effects of electrostatic, physical, and chemical interactions. Our results reveal that the capacity and rate capacity are drastically improved via coating the separator, leading to more than twice the capacity of over 800 mA h g

Conflict of interest statement

The authors declare no competing financial interest.

References

  1. Nano Lett. 2011 Jul 13;11(7):2644-7 - PubMed
  2. Nano Lett. 2011 Oct 12;11(10):4462-7 - PubMed
  3. Nano Lett. 2011 Oct 12;11(10):4288-94 - PubMed
  4. ACS Nano. 2011 Nov 22;5(11):9187-93 - PubMed
  5. Nat Mater. 2011 Dec 15;11(1):19-29 - PubMed
  6. Chem Commun (Camb). 2012 Apr 28;48(34):4106-8 - PubMed
  7. Acc Chem Res. 2013 May 21;46(5):1125-34 - PubMed
  8. Nat Commun. 2012;3:1166 - PubMed
  9. Chem Soc Rev. 2013 Apr 7;42(7):3018-32 - PubMed
  10. Nano Lett. 2013;13(11):5534-40 - PubMed
  11. Angew Chem Int Ed Engl. 2013 Dec 9;52(50):13186-200 - PubMed
  12. Adv Mater. 2014 Jan;26(4):625-31, 664 - PubMed
  13. Adv Mater. 2014 Sep 17;26(35):6100-5 - PubMed
  14. Adv Mater. 2014 Aug 13;26(30):5113-8 - PubMed
  15. Chem Rev. 2014 Dec 10;114(23):11751-87 - PubMed
  16. Adv Mater. 2014 Nov 19;26(43):7352-7 - PubMed
  17. Adv Mater. 2015 Jan 27;27(4):669-75 - PubMed
  18. Nat Chem. 2015 Jan;7(1):19-29 - PubMed
  19. Adv Mater. 2015 May 13;27(18):2891-8 - PubMed
  20. Chemistry. 2016 May 23;22(22):7324-51 - PubMed
  21. ACS Cent Sci. 2015 Jul 22;1(4):206-16 - PubMed
  22. Small. 2017 Mar;13(12): - PubMed
  23. ACS Nano. 2017 Mar 28;11(3):2697-2705 - PubMed
  24. ACS Appl Mater Interfaces. 2017 Mar 22;9(11):9738-9746 - PubMed
  25. Nat Commun. 2017 Mar 03;8:14627 - PubMed
  26. ACS Appl Mater Interfaces. 2017 May 3;9(17):14878-14888 - PubMed
  27. Small. 2017 Oct;13(40): - PubMed

Publication Types