Display options
Share it on

ACS Omega. 2018 Aug 07;3(8):8709-8717. doi: 10.1021/acsomega.8b01157. eCollection 2018 Aug 31.

Enrichment of Surface-Active Compounds in Bursting Bubble Aerosols.

ACS omega

Konstantin Chingin, Runhan Yan, Dacai Zhong, Huanwen Chen

Affiliations

  1. Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China.

PMID: 31459002 PMCID: PMC6644991 DOI: 10.1021/acsomega.8b01157

Abstract

The pronounced enrichment of surface-active compounds in the aerosols produced by bubble bursting plays a central role in the chemical transfer from the ocean into the atmosphere and has an important impact on the global Earth's climate. However, the mechanism of chemical enrichment in bursting bubble aerosols remains poorly understood and controversial due to the high complexity and diversity of experimental behaviors. Contrary to the common belief, here we show that the major share of surfactants in the jet droplets produced by individually bursting bubbles at a calm solution surface is released directly from the bubble surface rather than from the solution surface or subsurface microlayer. We reveal that surfactants are accumulated at the surface of a rising bubble in solution following three successive stages with strongly distinct adsorption profiles: linear kinetic, mixed kinetic, and equilibrium. The magnitude of surfactant enrichment in the aerosol is directly determined by which adsorption mode is in control by the moment of the bubble bursting at solution surface. Our mechanistic description explains the diversity of experimental observations regarding the surfactant enrichment in aerosol droplets and lays the ground for understanding the more complex behaviors associated with collective effects at the solution surface (e.g., breaking waves).

Conflict of interest statement

The authors declare no competing financial interest.

References

  1. Adv Colloid Interface Sci. 2000 Mar 31;85(2-3):103-44 - PubMed
  2. Environ Sci Technol. 2001 Oct 15;35(20):4089-96 - PubMed
  3. Chem Rev. 2001 Jun;101(6):1659-96 - PubMed
  4. Nature. 2002 Aug 22;418(6900):839-44 - PubMed
  5. J Microsc. 2004 Apr;214(Pt 1):89-98 - PubMed
  6. Nature. 2004 Oct 7;431(7009):676-80 - PubMed
  7. Chem Rev. 2006 Apr;106(4):1445-61 - PubMed
  8. Proc Natl Acad Sci U S A. 2009 Sep 29;106(39):16545-9 - PubMed
  9. Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6652-7 - PubMed
  10. Nature. 2010 Jun 10;465(7299):759-62 - PubMed
  11. Nat Commun. 2011 Jun 21;2:367 - PubMed
  12. Top Curr Chem. 2014;339:201-59 - PubMed
  13. Proc Natl Acad Sci U S A. 2013 May 7;110(19):7550-5 - PubMed
  14. Chem Rev. 2015 May 27;115(10):4383-99 - PubMed
  15. Environ Sci Technol. 2016 Mar 1;50(5):2477-86 - PubMed
  16. Food Chem. 2016 Aug 15;205:106-11 - PubMed
  17. Anal Chem. 2016 May 17;88(10):5033-6 - PubMed
  18. J Phys Chem Lett. 2016 May 5;7(9):1692-6 - PubMed
  19. Acc Chem Res. 2017 Mar 21;50(3):599-604 - PubMed
  20. Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):13363-13368 - PubMed
  21. Science. 1970 Nov 6;170(3958):626-8 - PubMed
  22. Science. 1977 Nov 11;198(4317):575-80 - PubMed
  23. Science. 1998 Mar 13;279(5357):1704-7 - PubMed

Publication Types