Display options
Share it on

ACS Omega. 2019 Jun 19;4(6):10662-10669. doi: 10.1021/acsomega.9b01030. eCollection 2019 Jun 30.

Radiofrequency Hyperthermia of Cancer Cells Enhanced by Silicic Acid Ions Released During the Biodegradation of Porous Silicon Nanowires.

ACS omega

Maxim Gongalsky, Georgii Gvindzhiliia, Konstantin Tamarov, Olga Shalygina, Alexander Pavlikov, Valery Solovyev, Andrey Kudryavtsev, Vladimir Sivakov, Liubov A Osminkina

Affiliations

  1. Department of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia.
  2. University of Eastern Finland - Kuopio Campus, Yliopistonranta 1, 70210 Kuopio, Finland.
  3. Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Pushchino, 142290 Moscow Region, Russia.
  4. Leibniz Institute of Photonic Technology, Jena 07745, Germany.
  5. Institute for Biological Instrumentation of Russian Academy of Sciences, Pushchino 142290, Russia.

PMID: 31460163 PMCID: PMC6648043 DOI: 10.1021/acsomega.9b01030

Abstract

The radiofrequency (RF) mild hyperthermia effect sensitized by biodegradable nanoparticles is a promising approach for therapy and diagnostics of numerous human diseases including cancer. Herein, we report the significant enhancement of local destruction of cancer cells induced by RF hyperthermia in the presence of degraded low-toxic porous silicon (PSi) nanowires (NWs). Proper selection of RF irradiation time (10 min), intensity, concentration of PSi NWs, and incubation time (24 h) decreased cell viability to 10%, which can be potentially used for cancer treatment. The incubation for 24 h is critical for degradation of PSi NWs and the formation of silicic acid ions H

Conflict of interest statement

The authors declare no competing financial interest.

References

  1. Radiology. 2000 Dec;217(3):633-46 - PubMed
  2. AJR Am J Roentgenol. 2001 Jan;176(1):3-16 - PubMed
  3. Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):9903-8 - PubMed
  4. Surgery. 2008 Aug;144(2):125-32 - PubMed
  5. Nat Mater. 2009 Apr;8(4):331-6 - PubMed
  6. Adv Drug Deliv Rev. 2010 Mar 8;62(3):339-45 - PubMed
  7. Curr Pharm Des. 2010 Jul;16(21):2298-307 - PubMed
  8. ACS Nano. 2010 Nov 23;4(11):6767-79 - PubMed
  9. ACS Nano. 2011 Jul 26;5(7):5354-64 - PubMed
  10. Small. 2011 Nov 4;7(21):2965-80 - PubMed
  11. Science. 2013 Apr 26;340(6131):441-2 - PubMed
  12. Nat Commun. 2013;4:2326 - PubMed
  13. Nanomedicine (Lond). 2014 Jan;9(1):121-34 - PubMed
  14. Biomaterials. 2014 Jun;35(19):5188-95 - PubMed
  15. Sci Rep. 2014 Nov 13;4:7034 - PubMed
  16. Cancer Med. 2015 Jun;4(6):834-43 - PubMed
  17. Nat Mater. 2015 May;14(5):532-9 - PubMed
  18. Mini Rev Med Chem. 2015;15(7):529-42 - PubMed
  19. Nanomedicine. 2016 Oct;12(7):1931-1940 - PubMed
  20. Thorac Cancer. 2016 Jul;7(4):422-7 - PubMed
  21. Oncotarget. 2016 Oct 4;7(40):65042-65051 - PubMed
  22. Int J Mol Sci. 2016 Sep 12;17(9): - PubMed
  23. Phys Chem Chem Phys. 2017 May 10;19(18):11510-11517 - PubMed
  24. Cancers (Basel). 2018 Jan 10;10(1):null - PubMed
  25. Sci Rep. 2018 Oct 19;8(1):15522 - PubMed
  26. Nanoscale. 2019 Jan 17;11(3):799-819 - PubMed
  27. Front Chem. 2019 Mar 29;7:165 - PubMed

Publication Types