Display options
Share it on

ACS Omega. 2019 Jul 18;4(7):12366-12374. doi: 10.1021/acsomega.9b01000. eCollection 2019 Jul 31.

Magnetofection of Green Fluorescent Protein Encoding DNA-Bearing Polyethyleneimine-Coated Superparamagnetic Iron Oxide Nanoparticles to Human Breast Cancer Cells.

ACS omega

Merve Zuvin, Efe Kuruoglu, Veysel Ogulcan Kaya, Ozlem Unal, Ozlem Kutlu, Havva Yagci Acar, Devrim Gozuacik, Ali Koşar

Affiliations

  1. Mechatronics Engineering Program, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, and Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Orhanli, 34956 Tuzla, Istanbul, Turkey.
  2. Department of Chemistry, Faculty of Arts and Sciences, Koc University, 34450 Sariyer, Istanbul, Turkey.
  3. SUNUM Nanotechnology Research and Application Center, Orhanli, 34956 Tuzla, Istanbul, Turkey.

PMID: 31460354 PMCID: PMC6682024 DOI: 10.1021/acsomega.9b01000

Abstract

Gene therapy is a developing method for the treatment of various diseases. For this purpose, the search for nonviral methods has recently accelerated to avoid toxic effects. A strong alternative method is magnetofection, which involves the use of superparamagnetic iron oxide nanoparticles (SPIONs) with a proper organic coating and external magnetic field to enhance the localization of SPIONs at the target site. In this study, a new magnetic actuation system consisting of four rare-earth magnets on a rotary table was designed and manufactured to obtain improved magnetofection. As a model, green fluorescent protein DNA-bearing polyethyleneimine-coated SPIONs were used. Magnetofection was tested on MCF7 cells. The system reduced the transfection time (down to 1 h) of the standard polyethyleneimine transfection protocol. As a result, we showed that the system could be effectively used for gene transfer.

Conflict of interest statement

The authors declare no competing financial interest.

References

  1. Gene Ther. 2002 Jan;9(2):102-9 - PubMed
  2. J Liposome Res. 2003 Feb;13(1):29-32 - PubMed
  3. J Gene Med. 2004 Aug;6(8):923-36 - PubMed
  4. Mol Ther. 2005 Jun;11(6):990-5 - PubMed
  5. Zebrafish. 2009 Sep;6(3):245-51 - PubMed
  6. Magn Reson Imaging. 2011 Feb;29(2):272-80 - PubMed
  7. Nanotechnology. 2008 Oct 8;19(40):405102 - PubMed
  8. Int J Nanomedicine. 2012;7:359-68 - PubMed
  9. Int J Nanomedicine. 2012;7:3445-71 - PubMed
  10. Mol Ther. 2013 Jan;21(1):149-57 - PubMed
  11. Biores Open Access. 2013 Feb;2(1):20-7 - PubMed
  12. Lancet. 2014 Mar 29;383(9923):1138-46 - PubMed
  13. Lancet. 2014 Mar 29;383(9923):1129-37 - PubMed
  14. Hum Gene Ther. 2014 Jan;25(1):3-11 - PubMed
  15. Nat Rev Genet. 2014 Aug;15(8):541-55 - PubMed
  16. Adv Healthc Mater. 2015 Jan 28;4(2):223-7 - PubMed
  17. Gene Ther. 2015 Jan;22(1):20-8 - PubMed
  18. ACS Nano. 2015 Feb 24;9(2):1236-49 - PubMed
  19. Artif Cells Nanomed Biotechnol. 2016 Jun;44(4):1186-93 - PubMed
  20. J Clin Diagn Res. 2015 Jan;9(1):GE01-6 - PubMed
  21. Ann Biomed Eng. 2015 Nov;43(11):2816-26 - PubMed
  22. Biomed Res Int. 2015;2015:959175 - PubMed
  23. J Biomed Nanotechnol. 2015 Aug;11(8):1370-84 - PubMed
  24. Biomater Sci. 2016 Jan;4(1):70-86 - PubMed
  25. ACS Appl Mater Interfaces. 2016 Mar;8(10):6320-8 - PubMed
  26. Nanomedicine (Lond). 2016 Mar;11(6):627-41 - PubMed
  27. ACS Appl Mater Interfaces. 2016 Apr 13;8(14):8870-4 - PubMed
  28. Gene Ther. 2016 Dec;23(12):857-862 - PubMed
  29. Nanomaterials (Basel). 2017 Jan 29;7(2): - PubMed
  30. Curr Gene Ther. 2017;17(1):59-69 - PubMed
  31. Front Immunol. 2018 Apr 26;9:866 - PubMed
  32. Oncol Lett. 2018 Jul;16(1):687-702 - PubMed
  33. Nanoscale Res Lett. 2019 Mar 12;14(1):90 - PubMed

Publication Types