Display options
Share it on

Heliyon. 2019 Sep 03;5(9):e02390. doi: 10.1016/j.heliyon.2019.e02390. eCollection 2019 Sep.

Microglia are both a source and target of extracellular cyclophilin A.

Heliyon

Gurkiran Kaur Flora, Ryan S Anderton, Bruno P Meloni, Gilles J Guillemin, Neville W Knuckey, Gabriella MacDougall, Vance Matthews, Sherif Boulos

Affiliations

  1. Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Australia.
  2. Perron Institute for Neurological and Translational Sciences, QEII Medical Centre, Nedlands, Western Australia, Australia.
  3. School of Health Sciences and Institute for Health Research, Fremantle, University of Notre Dame Australia, Australia.
  4. Department of Neurosurgery, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia, Australia.
  5. Neuroinflammation Group, Faculty of Medicine and Health Sciences, 2 Technology Place, Macquarie University, New South Wales, Australia.
  6. School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia.

PMID: 31517118 PMCID: PMC6731207 DOI: 10.1016/j.heliyon.2019.e02390

Abstract

Glioblastoma (GBM) are lethal primary brain tumours whose pathogenesis is aided, at least partly, via a pro-tumorigenic microenvironment. This study investigated whether microglia, a cell component of the GBM microenvironment, mediates pro-tumorigenic properties via the action of cyclophilin A (CypA), a potent secretable chemokine and cytoprotectant that signals via the cell surface receptor, CD147. To this end, intracellular and secreted CypA expression was assessed in human primary microglia and BV2 microglial cells treated with the endotoxin, lipopolysaccharide (LPS) and the oxidative stress inducer, LY83583. We report that human primary microglia and BV2 microglia both express CypA and CD147, and that BV2 microglial cells secrete CypA in response to pro-inflammatory and oxidative stimuli. We also demonstrate for the first time that recombinant CypA (rCypA; 1nM-1000nM) dose-dependently increased wound healing and reduced basal cell death in BV2 microglial cells. To determine the cell-signalling pathways involved, we probed microglial cell lysates for changes in ERK1/2 and AKT phosphorylation, IκB degradation, and IL-6 secretion using Western blot and ELISA analysis. In summary, BV2 microglial cells secrete CypA in response to inflammatory and oxidative stress, and that rCypA increases cell viability and chemotaxis. Our findings suggest that rCypA is a pro-survival chemokine for microglia that may influence the GBM tumour microenvironment.

Keywords: Biochemistry; CD147; Cyclophilin A; Glioblastoma; Immunology; Inflammation; Microglia; Neurology; Neuroscience; Oxidative stress; Proteins

References

  1. PLoS One. 2011;6(8):e23902 - PubMed
  2. Curr Top Med Chem. 2018;18(21):1872-1882 - PubMed
  3. Int J Cancer. 2006 Oct 15;119(8):1800-10 - PubMed
  4. Biochemistry. 1991 Jun 25;30(25):6127-34 - PubMed
  5. Neurochem Int. 2005 Nov;47(6):430-41 - PubMed
  6. Glia. 2002 Nov;40(2):252-9 - PubMed
  7. Circ Res. 2006 Mar 31;98(6):811-7 - PubMed
  8. Tumour Biol. 2015 Feb;36(2):849-59 - PubMed
  9. J Mol Neurosci. 2017 Feb;61(2):235-246 - PubMed
  10. Pathol Int. 2017 Nov;67(11):555-563 - PubMed
  11. Aging Dis. 2010 Dec;1(3):199-211 - PubMed
  12. J Natl Cancer Inst. 2007 Nov 7;99(21):1583-93 - PubMed
  13. J Clin Neurosci. 2005 Nov;12(8):930-3 - PubMed
  14. PLoS One. 2013;8(3):e58069 - PubMed
  15. Brain. 2007 Feb;130(Pt 2):476-89 - PubMed
  16. J Clin Immunol. 2010 Jan;30(1):24-33 - PubMed
  17. Med Res Rev. 2000 Nov;20(6):452-84 - PubMed
  18. Front Biosci (Landmark Ed). 2017 Jun 1;22:1805-1829 - PubMed
  19. J Immunol. 2008 Oct 15;181(8):5425-32 - PubMed
  20. J Neurosci Res. 2005 Aug 1;81(3):447-55 - PubMed
  21. Biochem Biophys Res Commun. 2007 Sep 28;361(3):763-7 - PubMed
  22. J Neurooncol. 2011 Jan;101(1):1-14 - PubMed
  23. Immune Netw. 2009 Jun;9(3):90-7 - PubMed
  24. Biochem Biophys Res Commun. 2004 Apr 23;317(1):162-8 - PubMed
  25. Ann Transl Med. 2015 Jun;3(10):136 - PubMed
  26. Mol Neurobiol. 2019 Mar;56(3):1681-1693 - PubMed
  27. J Neurooncol. 2013 Oct;115(1):19-26 - PubMed
  28. Neurobiol Dis. 2007 Jan;25(1):54-64 - PubMed
  29. Clin Immunol. 2005 Sep;116(3):217-24 - PubMed
  30. J Neurosurg. 2009 Aug;111(2):219-25 - PubMed
  31. Clin Cancer Res. 2017 Nov 1;23(21):6640-6649 - PubMed
  32. Cancer. 2006 May 15;106(10):2284-94 - PubMed
  33. Glia. 1999 Dec;28(3):265-71 - PubMed
  34. Glia. 2005 Jan 1;49(1):15-23 - PubMed
  35. Genomics. 1995 Jul 1;28(1):101-4 - PubMed
  36. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3511-5 - PubMed
  37. Cancer Res. 2007 Apr 15;67(8):3654-62 - PubMed
  38. Int J Biol Sci. 2012;8(9):1254-66 - PubMed
  39. Science. 1984 Nov 2;226(4674):544-7 - PubMed
  40. J Biol Regul Homeost Agents. 2018 Nov-Dec;32(6):1345-1347 - PubMed
  41. J Alzheimers Dis. 2014;39(3):545-56 - PubMed
  42. Rheumatology (Oxford). 2014 Dec;53(12):2288-96 - PubMed
  43. Cancer Res. 2005 Oct 1;65(19):8853-60 - PubMed
  44. J Biol Regul Homeost Agents. 2018 May-Jun;32(3):449-454 - PubMed
  45. Mol Immunol. 2015 Feb;63(2):253-63 - PubMed
  46. Oncol Rep. 2010 Apr;23(4):1053-62 - PubMed
  47. Circ Res. 2000 Oct 27;87(9):789-96 - PubMed
  48. Immunology. 1991 Mar;72(3):399-404 - PubMed

Publication Types