Display options
Share it on

Mol Cell. 2019 Aug 22;75(4):769-780.e4. doi: 10.1016/j.molcel.2019.07.011.

Single-Nucleotide-Resolution Computing and Memory in Living Cells.

Molecular cell

Fahim Farzadfard, Nava Gharaei, Yasutomi Higashikuni, Giyoung Jung, Jicong Cao, Timothy K Lu

Affiliations

  1. Synthetic Biology Group, Research Laboratory of Electronics, Department of Electrical Engineering & Computer Science and Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; MIT Synthetic Biology Center, 500 Technology Square, Cambridge MA 02139, USA; MIT Microbiology Graduate Program, 77 Massachusetts Avenue, Cambridge MA 02139, USA. Electronic address: [email protected].
  2. MCO Graduate Program, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
  3. Synthetic Biology Group, Research Laboratory of Electronics, Department of Electrical Engineering & Computer Science and Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; MIT Synthetic Biology Center, 500 Technology Square, Cambridge MA 02139, USA.
  4. Synthetic Biology Group, Research Laboratory of Electronics, Department of Electrical Engineering & Computer Science and Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; MIT Synthetic Biology Center, 500 Technology Square, Cambridge MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA.
  5. Synthetic Biology Group, Research Laboratory of Electronics, Department of Electrical Engineering & Computer Science and Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; MIT Synthetic Biology Center, 500 Technology Square, Cambridge MA 02139, USA; MIT Microbiology Graduate Program, 77 Massachusetts Avenue, Cambridge MA 02139, USA. Electronic address: [email protected].

PMID: 31442423 PMCID: PMC7001763 DOI: 10.1016/j.molcel.2019.07.011

Abstract

The ability to process and store information in living cells is essential for developing next-generation therapeutics and studying biology in situ. However, existing strategies have limited recording capacity and are challenging to scale. To overcome these limitations, we developed DOMINO, a robust and scalable platform for encoding logic and memory in bacterial and eukaryotic cells. Using an efficient single-nucleotide-resolution Read-Write head for DNA manipulation, DOMINO converts the living cells' DNA into an addressable, readable, and writable medium for computation and storage. DOMINO operators enable analog and digital molecular recording for long-term monitoring of signaling dynamics and cellular events. Furthermore, multiple operators can be layered and interconnected to encode order-independent, sequential, and temporal logic, allowing recording and control over the combination, order, and timing of molecular events in cells. We envision that DOMINO will lay the foundation for building robust and sophisticated computation-and-memory gene circuits for numerous biotechnological and biomedical applications.

Copyright © 2019 Elsevier Inc. All rights reserved.

Keywords: DNA memory; DNA writing; analog and digital recording and computation; base editing; cellular computation; dynamic genome engineering; logic circuits; molecular recording; synthetic gene circuits

References

  1. Science. 2016 Jul 22;353(6297):aad8559 - PubMed
  2. BMC Bioinformatics. 2005 May 31;6:133 - PubMed
  3. Cell. 2016 Sep 22;167(1):233-247.e17 - PubMed
  4. Science. 2018 May 25;360(6391):915-918 - PubMed
  5. Mol Cell. 2014 Oct 23;56(2):333-339 - PubMed
  6. Nat Biotechnol. 2018 Oct;36(9):843-846 - PubMed
  7. Science. 2018 Apr 13;360(6385): - PubMed
  8. Science. 2014 Nov 14;346(6211):1256272 - PubMed
  9. Science. 2016 Sep 16;353(6305): - PubMed
  10. Science. 2018 Aug 31;361(6405): - PubMed
  11. RNA. 2003 Apr;9(4):493-501 - PubMed
  12. Nat Methods. 2015 Apr;12(4):326-8 - PubMed
  13. Science. 2016 Jul 29;353(6298):aaf7907 - PubMed
  14. Nat Chem Biol. 2019 Feb;15(2):196-204 - PubMed
  15. Nat Biotechnol. 2015 May;33(5):510-7 - PubMed
  16. Science. 2002 Feb 1;295(5556):868-72 - PubMed
  17. Methods Enzymol. 2011;498:349-61 - PubMed
  18. Nature. 2017 Nov 23;551(7681):464-471 - PubMed
  19. Cell. 2013 Feb 28;152(5):1173-83 - PubMed
  20. PLoS One. 2008;3(11):e3647 - PubMed
  21. Science. 2016 Sep 9;353(6304): - PubMed
  22. Cell. 2013 Jul 18;154(2):442-51 - PubMed
  23. Nature. 2016 Apr 20;533(7603):420-4 - PubMed
  24. Microbiology (Reading). 2013 Jul;159(Pt 7):1236-1253 - PubMed
  25. ACS Synth Biol. 2013 Oct 18;2(10):604-13 - PubMed
  26. Science. 2017 Dec 15;358(6369):1457-1461 - PubMed
  27. Science. 2018 Aug 31;361(6405):870-875 - PubMed
  28. Nucleic Acids Res. 1997 Mar 15;25(6):1203-10 - PubMed
  29. Mol Cell. 2016 Jul 21;63(2):329-336 - PubMed

Substances

MeSH terms

Publication Types

Grant support