Display options
Share it on

Front Neurosci. 2019 Aug 23;13:899. doi: 10.3389/fnins.2019.00899. eCollection 2019.

Early Pain Exposure Influences Functional Brain Connectivity in Very Preterm Neonates.

Frontiers in neuroscience

Domenico Tortora, Mariasavina Severino, Carlo Di Biase, Maryia Malova, Alessandro Parodi, Diego Minghetti, Cristina Traggiai, Sara Uccella, Luca Boeri, Giovanni Morana, Andrea Rossi, Luca Antonio Ramenghi

Affiliations

  1. Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
  2. Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
  3. Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.

PMID: 31507370 PMCID: PMC6716476 DOI: 10.3389/fnins.2019.00899

Abstract

BACKGROUND: Early exposure to nociceptive events may cause brain structural alterations in preterm neonates, with long-lasting consequences on neurodevelopmental outcome. Little is known on the extent to which early pain may affect brain connectivity. We aim to evaluate brain functional connectivity changes in preterm neonate that underwent multiple invasive procedures during the postnatal period, and to correlate them with the neurodevelopmental outcome at 24 months.

METHODS: In this prospective case-control study, we collected information about exposure to painful events during the early postnatal period and resting-state BOLD-fMRI data at term equivalent age from two groups of preterm neonate: 33 subjected to painful procedures during the neonatal intensive care (mean gestational age 27.9 ± 1.8 weeks) and 13 who did not require invasive procedures (average gestational age 31.2 ± 2.1 weeks). A data-driven principal-component-based multivariate pattern analysis (MVPA) was used to investigate the effect of early pain exposure on brain functional connectivity, and the relationship between connectivity changes and neurodevelopmental outcome at 24 months, assessed with Griffiths, Developmental Scale-Revised: 0-2.

RESULTS: Early pain was associated with decreased functional connectivity between thalami and bilateral somatosensory cortex, and between the right insular cortex and ipsilateral amygdala and hippocampal regions, with a more evident effect in preterm neonate undergoing more invasive procedures. Functional connectivity of the right thalamocortical pathway was related to neuromotor outcome at 24 months (

CONCLUSION: Early exposure to pain is associated with abnormal functional connectivity of developing networks involved in the modulation of noxious stimuli in preterm neonate, contributing to the neurodevelopmental consequence of preterm birth.

Keywords: brain connectivity; fMRI; functional connectivity; neonatal neuroimaging; nociceptive modulations; pain; preterm neonates; resting state

References

  1. Arch Dis Child Fetal Neonatal Ed. 1999 Mar;80(2):F146-7 - PubMed
  2. Exp Physiol. 2002 Mar;87(2):251-8 - PubMed
  3. J Neuropathol Exp Neurol. 2003 May;62(5):441-50 - PubMed
  4. Nat Rev Neurosci. 2005 Jul;6(7):507-20 - PubMed
  5. Neuroimage. 2007 Aug 1;37(1):90-101 - PubMed
  6. Eur J Pain. 2008 Oct;12(7):945-51 - PubMed
  7. Expert Rev Neurother. 2008 Nov;8(11):1617-20 - PubMed
  8. Pain. 2009 Jan;141(1-2):79-87 - PubMed
  9. Pain. 2009 May;143(1-2):138-46 - PubMed
  10. Pain. 2009 Dec 15;147(1-3):99-106 - PubMed
  11. Neuroimage. 2010 Aug 15;52(2):409-14 - PubMed
  12. Neuroimage. 2011 Feb 14;54(4):2750-63 - PubMed
  13. Neuron. 1990 Dec;5(6):745-56 - PubMed
  14. PLoS One. 2011 Apr 14;6(4):e18746 - PubMed
  15. Ann Neurol. 2011 Oct;70(4):541-9 - PubMed
  16. Ann Neurol. 2012 Mar;71(3):385-96 - PubMed
  17. J Pain. 2012 Jun;13(6):590-7 - PubMed
  18. Brain Connect. 2012;2(3):125-41 - PubMed
  19. PLoS One. 2013 Oct 18;8(10):e76702 - PubMed
  20. Neurology. 2013 Dec 10;81(24):2082-9 - PubMed
  21. J Physiol. 2014 Apr 1;592(7):1535-44 - PubMed
  22. Pediatr Res. 2014 May;75(5):584-7 - PubMed
  23. Pediatrics. 2014 Mar;133(3):412-21 - PubMed
  24. Psychoneuroendocrinology. 2015 Jan;51:151-63 - PubMed
  25. Brain Struct Funct. 2016 Jan;221(1):487-506 - PubMed
  26. AJNR Am J Neuroradiol. 2015 Mar;36(3):581-6 - PubMed
  27. Surg Neurol Int. 2014 Nov 13;5(Suppl 13):S479-89 - PubMed
  28. AJNR Am J Neuroradiol. 2015 Aug;36(8):1565-71 - PubMed
  29. Can J Psychiatry. 2015 Apr;60(4):176-80 - PubMed
  30. Neuroimage. 2016 Jan 1;124(Pt A):267-275 - PubMed
  31. Brain Struct Funct. 2016 Jul;221(6):3211-22 - PubMed
  32. Neuroradiol J. 2016 Apr;29(2):137-45 - PubMed
  33. Eur J Paediatr Neurol. 2017 Jan;21(1):23-48 - PubMed
  34. Dev Med Child Neurol. 2017 Apr;59(4):433-440 - PubMed
  35. Neuroimage Clin. 2016 May 09;12:1004-1012 - PubMed
  36. Arch Dis Child Fetal Neonatal Ed. 2017 Mar;102(2):F176-F182 - PubMed
  37. Pain. 1989 Oct;39(1):31-6 - PubMed
  38. Eur Radiol. 2018 Mar;28(3):1157-1166 - PubMed
  39. Neuroscience. 2018 Sep 1;387:58-71 - PubMed
  40. J Neurosci. 2018 Jan 24;38(4):878-886 - PubMed
  41. J Magn Reson Imaging. 2018 Nov;48(5):1199-1207 - PubMed
  42. Neuroimage Clin. 2019;21:101596 - PubMed
  43. Front Pediatr. 2018 Nov 29;6:369 - PubMed
  44. Front Psychol. 2019 Apr 02;10:715 - PubMed
  45. Nature. 1995 May 25;375(6529):325-8 - PubMed
  46. Pain. 1994 Mar;56(3):353-9 - PubMed
  47. Cell. 1993 Jan;72 Suppl:77-98 - PubMed
  48. J Neurosci. 1998 Aug 15;18(16):6241-53 - PubMed

Publication Types