Display options
Share it on

Adv Sci (Weinh). 2019 Jul 25;6(17):1900431. doi: 10.1002/advs.201900431. eCollection 2019 Sep 04.

Molecular Design Strategies for Electrochemical Behavior of Aromatic Carbonyl Compounds in Organic and Aqueous Electrolytes.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)

Huiling Peng, Qianchuan Yu, Shengping Wang, Jeonghun Kim, Alan E Rowan, Ashok Kumar Nanjundan, Yusuke Yamauchi, Jingxian Yu

Affiliations

  1. Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430074 China.
  2. Key Laboratory of Eco-chemical Engineering College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao 266042 China.
  3. Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane QLD 4072 Australia.
  4. School of Chemical Engineering Faculty of Engineering Architecture and Information Technology (EAIT) The University of Queensland Brisbane QLD 4072 Australia.
  5. International Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan.
  6. ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) School of Chemistry and Physics The University of Adelaide Adelaide SA 5005 Australia.

PMID: 31508272 PMCID: PMC6724361 DOI: 10.1002/advs.201900431

Abstract

To sustainably satisfy the growing demand for energy, organic carbonyl compounds (OCCs) are being widely studied as electrode active materials for batteries owing to their high capacity, flexible structure, low cost, environmental friendliness, renewability, and universal applicability. However, their high solubility in electrolytes, limited active sites, and low conductivity are obstacles in increasing their usage. Here, the nucleophilic addition reaction of aromatic carbonyl compounds (ACCs) is first used to explain the electrochemical behavior of carbonyl compounds during charge-discharge, and the relationship of the molecular structure and electrochemical properties of ACCs are discussed. Strategies for molecular structure modifications to improve the performance of ACCs, i.e., the capacity density, cycle life, rate performance, and voltage of the discharge platform, are also elaborated. ACCs, as electrode active materials in aqueous solutions, will become a future research hotspot. ACCs will inevitably become sustainable green materials for batteries with high capacity density and high power density.

Keywords: aromatic carbonyl compounds; batteries; electrochemical behavior; electrode materials

Conflict of interest statement

The authors declare no conflict of interest.

References

  1. Science. 2006 May 12;312(5775):885-8 - PubMed
  2. J Am Chem Soc. 2007 Oct 24;129(42):12847-56 - PubMed
  3. Nat Mater. 2009 Feb;8(2):120-5 - PubMed
  4. Nature. 2009 Mar 12;458(7235):190-3 - PubMed
  5. Science. 2009 May 22;324(5930):1051-5 - PubMed
  6. Angew Chem Int Ed Engl. 2010 Nov 2;49(45):8444-8 - PubMed
  7. Chem Commun (Camb). 2011 Feb 28;47(8):2414-6 - PubMed
  8. Nano Lett. 2012 May 9;12(5):2205-11 - PubMed
  9. Angew Chem Int Ed Engl. 2012 May 21;51(21):5147-51 - PubMed
  10. Chem Commun (Camb). 2013 Mar 7;49(19):1945-7 - PubMed
  11. Angew Chem Int Ed Engl. 2013 Aug 26;52(35):9162-6 - PubMed
  12. Nano Lett. 2013 Sep 11;13(9):4404-9 - PubMed
  13. Chem Asian J. 2014 Jan;9(1):206-11 - PubMed
  14. Nature. 2014 Jan 9;505(7482):195-8 - PubMed
  15. Adv Mater. 2014 May 28;26(20):3338-43 - PubMed
  16. Angew Chem Int Ed Engl. 2014 Jun 2;53(23):5892-6 - PubMed
  17. Chem Commun (Camb). 2014 Oct 9;50(78):11565-7 - PubMed
  18. Nat Commun. 2014 Oct 31;5:5335 - PubMed
  19. ACS Appl Mater Interfaces. 2015 Feb 18;7(6):3473-9 - PubMed
  20. Adv Mater. 2015 May 13;27(18):2907-12 - PubMed
  21. Adv Mater. 2015 Sep 16;27(35):5141-6 - PubMed
  22. Nano Lett. 2015 Sep 9;15(9):5982-7 - PubMed
  23. ACS Appl Mater Interfaces. 2015 Sep 30;7(38):21095-9 - PubMed
  24. Angew Chem Int Ed Engl. 2015 Nov 16;54(47):13947-51 - PubMed
  25. Adv Mater. 2015 Nov 4;27(41):6504-10 - PubMed
  26. Acc Chem Res. 2015 Dec 15;48(12):3053-63 - PubMed
  27. Chem Commun (Camb). 2016 Feb 18;52(14):3000-2 - PubMed
  28. Sci Adv. 2016 Jan 22;2(1):e1501038 - PubMed
  29. Sci Rep. 2016 Apr 11;6:23515 - PubMed
  30. Angew Chem Int Ed Engl. 2016 May 23;55(22):6428-32 - PubMed
  31. ACS Appl Mater Interfaces. 2016 Sep 7;8(35):22762-7 - PubMed
  32. Adv Sci (Weinh). 2015 Jun 08;2(9):1500124 - PubMed
  33. Angew Chem Int Ed Engl. 2017 Mar 6;56(11):2909-2913 - PubMed
  34. ChemSusChem. 2017 May 22;10(10):2116-2129 - PubMed
  35. J Am Chem Soc. 2017 Mar 29;139(12):4258-4261 - PubMed
  36. ACS Appl Mater Interfaces. 2017 May 10;9(18):15549-15556 - PubMed
  37. ACS Appl Mater Interfaces. 2017 May 10;9(18):15631-15637 - PubMed
  38. J Am Chem Soc. 2017 May 17;139(19):6635-6643 - PubMed
  39. ACS Appl Mater Interfaces. 2017 Jun 14;9(23):19446-19454 - PubMed
  40. Nat Mater. 2017 Aug;16(8):841-848 - PubMed
  41. Sci Rep. 2017 Jul 7;7(1):4847 - PubMed
  42. Angew Chem Int Ed Engl. 2017 Oct 2;56(41):12561-12565 - PubMed
  43. J Am Chem Soc. 2017 Sep 20;139(37):13031-13037 - PubMed
  44. Nature. 2017 Sep 20;549(7672):339-340 - PubMed
  45. Chemistry. 2017 Nov 21;23(65):16612-16620 - PubMed
  46. Angew Chem Int Ed Engl. 2017 Nov 27;56(48):15334-15338 - PubMed
  47. Chem Soc Rev. 2018 Jan 2;47(1):69-103 - PubMed
  48. Adv Sci (Weinh). 2017 Oct 26;4(12):1700465 - PubMed
  49. ACS Appl Mater Interfaces. 2018 Jan 31;10(4):3479-3486 - PubMed
  50. ChemSusChem. 2018 Feb 22;11(4):763-772 - PubMed
  51. Proc Natl Acad Sci U S A. 2018 Feb 27;115(9):2004-2009 - PubMed
  52. Nat Commun. 2018 Feb 14;9(1):661 - PubMed
  53. Phys Chem Chem Phys. 2018 Mar 14;20(11):7447-7456 - PubMed
  54. Sci Adv. 2018 Mar 02;4(3):eaao1761 - PubMed
  55. ACS Nano. 2018 Apr 24;12(4):3424-3435 - PubMed
  56. Phys Chem Chem Phys. 2018 May 16;20(19):13478-13484 - PubMed
  57. J Phys Chem Lett. 2018 Jun 21;9(12):3205-3211 - PubMed
  58. Angew Chem Int Ed Engl. 2018 Jul 20;57(30):9443-9446 - PubMed
  59. Chemistry. 2018 Dec 10;24(69):18235-18245 - PubMed
  60. Angew Chem Int Ed Engl. 2018 Sep 3;57(36):11737-11741 - PubMed

Publication Types