Display options
Share it on

JOR Spine. 2019 Sep 02;2(3):e1065. doi: 10.1002/jsp2.1065. eCollection 2019 Sep.

Radial variation in biochemical composition of the bovine caudal intervertebral disc.

JOR spine

Semih E Bezci, Benjamin Werbner, Minhao Zhou, Katerina G Malollari, Gabriel Dorlhiac, Carlo Carraro, Aaron Streets, Grace D O'Connell

Affiliations

  1. Department of Mechanical Engineering University of California Berkeley California.
  2. Berkeley Biophysics Program University of California Berkeley California.
  3. Department of Chemical and Biomolecular Engineering University of California Berkeley California.
  4. Department of Bioengineering University of California Berkeley California.
  5. Chan-Zuckerberg Biohub San Francisco California.
  6. Department of Orthopaedic Surgery University of California San Francisco California.

PMID: 31572982 PMCID: PMC6764789 DOI: 10.1002/jsp2.1065

Abstract

Bovine caudal discs have been widely used in spine research due to their increased availability, large size, and mechanical and biochemical properties that are comparable to healthy human discs. However, despite their extensive use, the radial variations in bovine disc composition have not yet been rigorously quantified with high spatial resolution. Previous studies were limited to qualitative analyses or provided limited spatial resolution in biochemical properties. Thus, the main objective of this study was to provide quantitative measurements of biochemical composition with higher spatial resolution than previous studies that employed traditional biochemical techniques. Specifically, traditional biochemical analyses were used to measure water, sulfated glycosaminoglycan, collagen, and DNA contents. Gravimetric water content was compared to data obtained through Raman spectroscopy and differential scanning calorimetry. Additionally, spatial distribution of lipids in the disc's collagen network was visualized and quantified, for the first time, using multi-modal second harmonic generation (SHG) and Coherent anti-Stokes Raman (CARS) microscopy. Some heterogeneity was observed in the nucleus pulposus, where the water content and water-to-protein ratio of the inner nucleus were greater than the outer nucleus. In contrast, the bovine annulus fibrosus exhibited a more heterogeneous distribution of biochemical properties. Comparable results between orthohydroxyproline assay and SHG imaging highlight the potential benefit of using SHG microscopy as a less destructive method for measuring collagen content, particularly when relative changes are of interest. CARS images showed that lipid deposits were distributed equally throughout the disc and appeared either as individual droplets or as clusters of small droplets. In conclusion, this study provided a more comprehensive assessment of spatial variations in biochemical composition of the bovine caudal disc.

© 2019 The Authors. JOR Spine published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society.

Keywords: Coherent anti‐Stokes Raman; Raman spectroscopy; animal models; biochemistry; differential scanning calorimetry; intervertebral disc; second harmonic generation

Conflict of interest statement

The authors certify that there is no conflict of interest related to the work presented in this manuscript.

References

  1. Connect Tissue Res. 1981;9(1):1-10 - PubMed
  2. Biophys J. 1999 Jun;76(6):3243-52 - PubMed
  3. J Biomech. 2014 Jun 27;47(9):2088-94 - PubMed
  4. NPJ Regen Med. 2018 Feb 9;3:3 - PubMed
  5. J Biomed Opt. 2018 Jan;23(1):1-11 - PubMed
  6. Transfusion. 2014 May;54(5):1418-37 - PubMed
  7. Biophys J. 2002 Jan;82(1 Pt 1):493-508 - PubMed
  8. J Invest Dermatol. 1998 Dec;111(6):1129-33 - PubMed
  9. J Bone Joint Surg Am. 1991 Dec;73(10):1507-25 - PubMed
  10. J Funct Biomater. 2011 Sep 13;2(3):230-48 - PubMed
  11. Biomech Model Mechanobiol. 2017 Dec;16(6):2005-2015 - PubMed
  12. Cytometry A. 2006 Aug 1;69(8):779-91 - PubMed
  13. Spine (Phila Pa 1976). 2018 Mar 15;43(6):E334-E340 - PubMed
  14. Biopolymers. 2011 Sep;95(9):607-15 - PubMed
  15. Eur Cell Mater. 2018 Feb 22;35:117-131 - PubMed
  16. J Invest Dermatol. 1998 Apr;110(4):393-8 - PubMed
  17. Connect Tissue Res. 1982;9(4):247-8 - PubMed
  18. J Biomech Eng. 2015 Oct;137(10):101007 - PubMed
  19. Biomech Model Mechanobiol. 2005 Mar;3(3):125-40 - PubMed
  20. Spine (Phila Pa 1976). 2012 Jul 1;37(15):E900-7 - PubMed
  21. Int J Cosmet Sci. 2013 Apr;35(2):125-35 - PubMed
  22. J Therm Anal Calorim. 2009 Mar 1;95(3):937-943 - PubMed
  23. Eur Spine J. 2007 Apr;16(4):547-55 - PubMed
  24. J Biomech Eng. 2018 Oct 22;:null - PubMed
  25. J Dev Biol. 2016 Jan 21;4(1): - PubMed
  26. Bone. 2014 Oct;67:228-36 - PubMed
  27. Sci Rep. 2015 Aug 21;5:13378 - PubMed
  28. Clin Orthop Relat Res. 1979 Sep;(143):260-5 - PubMed
  29. Atherosclerosis. 1975 May-Jun;21(3):371-89 - PubMed
  30. J Gen Physiol. 1934 Jul 20;17(6):783-90 - PubMed
  31. Spine (Phila Pa 1976). 2007 Feb 1;32(3):328-33 - PubMed
  32. J Biomech. 2005 Nov;38(11):2164-71 - PubMed
  33. J Anat. 2012 Dec;221(6):480-96 - PubMed
  34. J Biomech. 2017 Jul 26;60:261-265 - PubMed
  35. J Clin Invest. 1996 Aug 15;98(4):996-1003 - PubMed
  36. J Mech Behav Biomed Mater. 2018 Jan;77:353-359 - PubMed
  37. Eur Spine J. 2017 Aug;26(8):2053-2062 - PubMed
  38. Arthritis Rheum. 1975 Sep-Oct;18(5):461-73 - PubMed
  39. Ann Biomed Eng. 2013 Nov;41(11):2426-36 - PubMed
  40. J Biomed Opt. 2011 Jan-Feb;16(1):017003 - PubMed
  41. J Biomed Opt. 2007 Nov-Dec;12(6):064019 - PubMed
  42. Matrix Biol. 1994 Jan;14(1):61-75 - PubMed
  43. J Biomech. 2007;40(9):1981-7 - PubMed
  44. J Chem Phys. 2014 Jan 28;140(4):044909 - PubMed
  45. Dent Mater. 2015 Mar;31(3):205-16 - PubMed
  46. Clin Chem. 1966 May;12(5):253-7 - PubMed
  47. Biomater Sci. 2018 Aug 21;6(9):2487-2495 - PubMed
  48. J Biomech. 2019 May 24;89:34-39 - PubMed
  49. J Bone Joint Surg Am. 2006 Apr;88 Suppl 2:10-4 - PubMed
  50. Ann Biomed Eng. 2006 May;34(5):769-77 - PubMed
  51. Biochim Biophys Acta. 1986 Sep 4;883(2):173-7 - PubMed
  52. Clin Biochem. 1996 Jun;29(3):225-9 - PubMed
  53. Clin Orthop Relat Res. 1977 Nov-Dec;(129):124-32 - PubMed
  54. Spine (Phila Pa 1976). 1994 Jun 15;19(12):1310-9 - PubMed
  55. J Exp Biol. 2018 Mar 7;221(Pt Suppl 1): - PubMed
  56. Spine (Phila Pa 1976). 2008 Mar 15;33(6):E166-73 - PubMed
  57. J Clin Invest. 1994 Apr;93(4):1722-32 - PubMed
  58. Osteoarthritis Cartilage. 2018 Oct;26(10):1400-1408 - PubMed
  59. Spine (Phila Pa 1976). 2004 Dec 15;29(24):2793-9 - PubMed
  60. Spine (Phila Pa 1976). 2007 Jun 15;32(14):1493-7 - PubMed
  61. Biophys J. 2011 Jul 6;101(1):228-36 - PubMed
  62. J Orthop Res. 2018 Feb 12;:null - PubMed
  63. Spine (Phila Pa 1976). 2002 Dec 1;27(23):2631-44 - PubMed
  64. J Biomed Opt. 2015 Jun;20(6):065008 - PubMed
  65. Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16807-12 - PubMed
  66. Anal Chem. 2001 Aug 15;73(16):3915-20 - PubMed

Publication Types