Display options
Share it on

Polymers (Basel). 2019 Oct 19;11(10). doi: 10.3390/polym11101717.

Basic Properties of a New Polymer Gel for 3D-Dosimetry at High Dose-Rates Typical for FFF Irradiation Based on Dithiothreitol and Methacrylic Acid (MAGADIT): Sensitivity, Range, Reproducibility, Accuracy, Dose Rate Effect and Impact of Oxygen Scavenger.

Polymers

Muzafar Khan, Gerd Heilemann, Wolfgang Lechner, Dietmar Georg, Andreas Georg Berg

Affiliations

  1. Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-23, A-1090 Vienna, Austria. [email protected].
  2. High-Field MR-Center (MRCE), Medical University of Vienna; Lazarettg 14, A-1090 Vienna, Austria. [email protected].
  3. Nuclear Medicine, Oncology and Radiotherapy Institute (NORI), G-8/3 Islamabad 44000, Pakistan. [email protected].
  4. Department of Radiation Oncology, Medical University of Vienna/AKH Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria. [email protected].
  5. Department of Radiation Oncology, Medical University of Vienna/AKH Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria. [email protected].
  6. Department of Radiation Oncology, Medical University of Vienna/AKH Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria. [email protected].
  7. Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-23, A-1090 Vienna, Austria. [email protected].
  8. High-Field MR-Center (MRCE), Medical University of Vienna; Lazarettg 14, A-1090 Vienna, Austria. [email protected].

PMID: 31635117 PMCID: PMC6835276 DOI: 10.3390/polym11101717

Abstract

The photon induced radical-initiated polymerization in polymer gels can be used for high-resolution tissue equivalent dosimeters in quality control of radiation therapy. The dose (D) distribution in radiation therapy can be measured as a change of the physical measurement parameter T2 using T2-weighted magnetic resonance imaging. The detection by T2 is relying on the local change of the molecular mobility due to local polymerization initiated by radicals generated by the ionizing radiation. The dosimetric signals R2 = 1/T2 of many of the current polymer gels are dose-rate dependent, which reduces the reliability of the gel for clinical use. A novel gel dosimeter, based on methacrylic acid, gelatin and the newly added dithiothreitol (MAGADIT) as an oxygen-scavenger was analyzed for basic properties, such as sensitivity, reproducibility, accuracy and dose-rate dependence. Dithiothreitol features no toxic classification with a difference to THPC and offers a stronger negative redox-potential than ascorbic acid. Polymer gels with three different concentration levels of dithiothreitol were irradiated with a preclinical research X-ray unit and MR-scanned (T2) for quantitative dosimetry after calibration. The polymer gel with the lowest concentration of the oxygen scavenger was about factor 3 more sensitive to dose as compared to the gel with the highest concentration. The dose sensitivity (α = ∆R2/∆D) of MAGADIT gels was significantly dependent on the applied dose rate D ˙ (≈48% reduction between D ˙ = 0.6 Gy/min and D ˙ = 4 Gy/min). However, this undesirable dose-rate effect reduced between 4-8 Gy/min (≈23%) and almost disappeared in the high dose-rate range (8 ≤   D ˙ ≤   12 Gy/min) used in flattening-filter-free (FFF) irradiations. The dose response varied for different samples within one manufacturing batch within 3%-6% (reproducibility). The accuracy ranged between 3.5% and 7.9%. The impact of the dose rate on the spatial integrity is demonstrated in the example of a linear accelerator (LINAC) small sized 5 × 10 mm

Keywords: 3D; FFF; dose rate; dosimetry; flattening filter free; gel; magnetic resonance; oxygen scavenger; polymer; precision; radiation therapy; responsive gels in biomedical and diagnostic applications

References

  1. Phys Med Biol. 2010 Mar 7;55(5):R1-63 - PubMed
  2. Phys Med Biol. 2009 Nov 21;54(22):6773-89 - PubMed
  3. Phys Med Biol. 2004 Oct 7;49(19):4507-22 - PubMed
  4. Med Phys. 2001 May;28(5):833-43 - PubMed
  5. Oral Oncol. 2010 Apr;46(4):283-6 - PubMed
  6. Phys Med Biol. 2013 Jan 7;58(1):19-42 - PubMed
  7. Phys Med Biol. 2001 Aug;46(8):2143-59 - PubMed
  8. Med Phys. 2007 Apr;34(4):1286-97 - PubMed
  9. Phys Med Biol. 1994 Sep;39(9):1437-55 - PubMed
  10. J Appl Clin Med Phys. 2013 May 06;14(3):4126 - PubMed
  11. Biochemistry. 1964 Apr;3:480-2 - PubMed
  12. Free Radic Biol Med. 2014 Apr;69:318-23 - PubMed
  13. Radiat Prot Dosimetry. 2006;120(1-4):107-12 - PubMed
  14. Phys Med Biol. 2007 Aug 7;52(15):4697-706 - PubMed
  15. Biomed Imaging Interv J. 2006 Jan;2(1):e19 - PubMed
  16. Br J Radiol. 1999 Nov;72(863):1085-92 - PubMed
  17. J Med Phys. 2011 Jan;36(1):3-14 - PubMed
  18. Br J Radiol. 2005 Jul;78(931):623-30 - PubMed
  19. Phys Med. 2016 Sep;32(9):1156-61 - PubMed
  20. Phys Med Biol. 2006 Jul 7;51(13):R363-79 - PubMed
  21. Med Phys. 2006 Jul;33(7):2506-18 - PubMed
  22. Z Med Phys. 2014 May;24(2):153-63 - PubMed
  23. Phys Med. 2019 Jan;57:72-79 - PubMed
  24. World J Radiol. 2017 Mar 28;9(3):112-125 - PubMed
  25. Phys Med Biol. 2015 Jun 7;60(11):4399-411 - PubMed
  26. Med Phys. 2008 May;35(5):1756-69 - PubMed
  27. Phys Med Biol. 2017 Feb 7;62(3):986-1008 - PubMed
  28. Phys Med Biol. 2019 Jan 31;64(3):035019 - PubMed
  29. Phys Med Biol. 2001 Nov;46(11):2801-25 - PubMed
  30. Phys Med Biol. 2015 Feb 21;60(4):1543-63 - PubMed
  31. Health Phys. 2008 Nov;95(5):666-76 - PubMed
  32. Phys Med Biol. 1996 Dec;41(12):2695-704 - PubMed
  33. Med Phys. 2011 Mar;38(3):1280-93 - PubMed
  34. Phys Med Biol. 1999 Oct;44(10):2677-84 - PubMed
  35. Phys Med Biol. 2018 Mar 12;63(6):06NT01 - PubMed
  36. Med Phys. 2011 Dec;38(12):6754-62 - PubMed
  37. Phys Med Biol. 2004 Sep 7;49(17):4087-108 - PubMed
  38. Radiother Oncol. 1998 Sep;48(3):283-91 - PubMed
  39. Phys Med Biol. 1984 Oct;29(10):1189-97 - PubMed
  40. Phys Med Biol. 2006 Feb 7;51(3):653-73 - PubMed
  41. PLoS One. 2015 Dec 17;10(12):e0145255 - PubMed
  42. Phys Med Biol. 2001 Dec;46(12):3105-13 - PubMed
  43. Phys Med Biol. 1998 Mar;43(3):695-702 - PubMed
  44. Med Phys. 2001 Nov;28(11):2370-8 - PubMed
  45. Phys Med Biol. 2000 Apr;45(4):859-78 - PubMed
  46. Med Phys. 2011 Aug;38(8):4846-57 - PubMed
  47. Int J Radiat Oncol Biol Phys. 2001 Apr 1;49(5):1451-60 - PubMed
  48. Phys Med Biol. 2006 Jul 21;51(14):3301-14 - PubMed
  49. Phys Med Biol. 2009 Nov 21;54(22):6791-808 - PubMed
  50. Phys Med Biol. 2002 Oct 7;47(19):3441-63 - PubMed
  51. Radiother Oncol. 2000 Jun;55(3):241-9 - PubMed
  52. Oncologist. 1999;4(6):433-42 - PubMed
  53. Appl Radiat Isot. 2010 Jan;68(1):144-54 - PubMed
  54. Int J Radiat Oncol Biol Phys. 2002 May 1;53(1):12-22 - PubMed
  55. Z Med Phys. 2014 Dec;24(4):363-72 - PubMed

Publication Types

Grant support