Display options
Share it on

PeerJ. 2019 Sep 27;7:e7785. doi: 10.7717/peerj.7785. eCollection 2019.

Warm seawater temperature promotes substrate colonization by the blue coral, .

PeerJ

Christine Guzman, Michael Atrigenio, Chuya Shinzato, Porfirio Aliño, Cecilia Conaco

Affiliations

  1. Marine Science Institute, College of Science, University of the Philippines Diliman, Quezon City, Philippines.
  2. Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan.
  3. Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa-shi, Chiba, Japan.

PMID: 31579631 PMCID: PMC6768060 DOI: 10.7717/peerj.7785

Abstract

METHODS: In this study, we subjected

RESULTS: A horizontal growth rate of 1.13 ± 0.25 mm per week was observed for corals subjected to 28 or 31 °C. This growth rate was significantly higher compared to corals exposed at 26 °C. This new growth was characterized by the extension of whitish tissue at the edges of the colony and was enriched for a matrix metallopeptidase, a calcium and integrin binding protein, and other transcripts with unknown function. Tissues at the growth margin and the adjacent calcified encrusting region were enriched for transcripts related to proline and riboflavin metabolism, nitrogen utilization, and organic cation transport. The calcified digitate regions, on the other hand, were enriched for transcripts encoding proteins involved in cell-matrix adhesion, translation, receptor-mediated endocytosis, photosynthesis, and ion transport. Functions related to lipid biosynthesis, extracellular matrix formation, cell migration, and oxidation-reduction processes were enriched at the growth margin in corals subjected for 3 weeks to 28 or 31 °C relative to corals at 26 °C. In the digitate region of the coral, transcripts encoding proteins that protect against oxidative stress, modify cell membrane composition, and mediate intercellular signaling pathways were enriched after just 24 h of exposure to 31 °C compared to corals at 28 °C. The overall downregulation of gene expression observed after 3 weeks of sustained exposure to 31 °C is likely compensated by symbiont metabolism.

DISCUSSION: These findings reveal that the different regions of

© 2019 Guzman et al.

Keywords: Blue coral; Climate change; Heliopora coerulea; Transcriptomics

Conflict of interest statement

The authors declare that they have no competing interests.

References

  1. Science. 2018 Jan 5;359(6371):80-83 - PubMed
  2. PLoS One. 2011;6(5):e20392 - PubMed
  3. PLoS One. 2014 Oct 01;9(10):e107525 - PubMed
  4. Integr Comp Biol. 2013 Oct;53(4):597-608 - PubMed
  5. Proc Biol Sci. 2012 Mar 22;279(1731):1100-7 - PubMed
  6. Mol Ecol. 2015 Apr;24(7):1467-84 - PubMed
  7. Proc Natl Acad Sci U S A. 2015 Feb 24;112(8):2307-13 - PubMed
  8. J Exp Biol. 2017 Sep 15;220(Pt 18):3327-3335 - PubMed
  9. Nat Biotechnol. 2011 May 15;29(7):644-52 - PubMed
  10. Glob Chang Biol. 2014 Dec;20(12):3823-33 - PubMed
  11. Bioinformatics. 2014 Aug 1;30(15):2114-20 - PubMed
  12. Sci Rep. 2016 Dec 06;6:38402 - PubMed
  13. Mol Ecol. 2008 Sep;17(17):3952-71 - PubMed
  14. Sci Rep. 2018 May 30;8(1):8397 - PubMed
  15. Science. 2010 Jul 16;329(5989):322-5 - PubMed
  16. Sci Rep. 2015 Oct 26;5:15667 - PubMed
  17. Anal Chem. 2011 Oct 15;83(20):7870-5 - PubMed
  18. Sci Rep. 2018 Nov 14;8(1):16802 - PubMed
  19. J Cell Biochem. 2011 Nov;112(11):3289-99 - PubMed
  20. PLoS One. 2013;8(2):e54989 - PubMed
  21. Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1387-92 - PubMed
  22. Science. 2007 Dec 14;318(5857):1737-42 - PubMed
  23. Trends Ecol Evol. 2009 Jan;24(1):16-20 - PubMed
  24. PLoS One. 2012;7(3):e33353 - PubMed
  25. J Exp Mar Bio Ecol. 2000 Mar 15;245(2):225-243 - PubMed
  26. Mol Ecol. 2010 Mar;19(6):1174-86 - PubMed
  27. Cold Spring Harb Perspect Biol. 2018 Jan 2;10(1): - PubMed
  28. Sci Rep. 2018 Oct 26;8(1):15875 - PubMed
  29. BMC Bioinformatics. 2011 Aug 04;12:323 - PubMed
  30. Nature. 2017 Mar 15;543(7645):373-377 - PubMed
  31. Bioinformatics. 2010 Jan 1;26(1):139-40 - PubMed
  32. Sci Rep. 2019 Feb 21;9(1):2512 - PubMed
  33. Mol Biol Evol. 2014 Jun;31(6):1343-52 - PubMed
  34. Nat Methods. 2012 Mar 04;9(4):357-9 - PubMed
  35. Bioinformatics. 2005 Sep 15;21(18):3674-6 - PubMed
  36. PLoS One. 2011;6(10):e26687 - PubMed
  37. Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):12728-33 - PubMed
  38. Curr Biol. 2014 May 19;24(10):R413-23 - PubMed
  39. Front Physiol. 2013 Jul 25;4:180 - PubMed
  40. Glob Chang Biol. 2015 Mar;21(3):1153-64 - PubMed
  41. Biol Bull. 2017 Apr;232(2):71-81 - PubMed
  42. Comp Biochem Physiol C Toxicol Pharmacol. 2017 Jan;191:63-77 - PubMed
  43. Mol Ecol. 2018 Mar;27(5):1103-1119 - PubMed
  44. PLoS One. 2015 Oct 28;10(10):e0139223 - PubMed
  45. Genome Biol Evol. 2015 Dec 28;8(1):243-52 - PubMed
  46. Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10444-9 - PubMed
  47. Mol Ecol. 2011 Sep;20(17):3599-616 - PubMed
  48. Nat Ecol Evol. 2016 Nov 07;1(1):14 - PubMed
  49. Front Genet. 2018 Feb 13;9:37 - PubMed
  50. Sci Rep. 2019 Feb 22;9(1):2571 - PubMed
  51. J Cell Physiol. 2008 Dec;217(3):643-51 - PubMed
  52. Proc Natl Acad Sci U S A. 2008 Jan 8;105(1):54-8 - PubMed
  53. Mol Ecol Resour. 2015 Sep;15(5):1205-15 - PubMed
  54. Sci Rep. 2017 Feb 09;7:42405 - PubMed
  55. Ecol Evol. 2017 May 25;7(13):4794-4803 - PubMed
  56. Mar Pollut Bull. 2016 Apr 15;105(1):237-48 - PubMed
  57. Am J Pathol. 2009 Aug;175(2):725-35 - PubMed

Publication Types