Display options
Share it on

Nat Chem. 2020 Jan;12(1):82-89. doi: 10.1038/s41557-019-0347-1. Epub 2019 Oct 21.

Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT.

Nature chemistry

Camilo A Mesa, Laia Francàs, Ke R Yang, Pablo Garrido-Barros, Ernest Pastor, Yimeng Ma, Andreas Kafizas, Timothy E Rosser, Matthew T Mayer, Erwin Reisner, Michael Grätzel, Victor S Batista, James R Durrant

Affiliations

  1. Molecular Sciences Research Hub and Centre for Plastic Electronics, Imperial College London, London, UK.
  2. Department of Chemistry and Energy Sciences Institute, Yale University, New Haven, CT, USA.
  3. Institute of Chemical Research of Catalonia (ICIQ), Tarragona, Spain.
  4. The Grantham Institute, Imperial College London, London, UK.
  5. Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Cambridge, UK.
  6. Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
  7. Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany.
  8. Department of Chemistry and Energy Sciences Institute, Yale University, New Haven, CT, USA. [email protected].
  9. Molecular Sciences Research Hub and Centre for Plastic Electronics, Imperial College London, London, UK. [email protected].

PMID: 31636394 DOI: 10.1038/s41557-019-0347-1

Abstract

Water oxidation is the key kinetic bottleneck of photoelectrochemical devices for fuel synthesis. Despite advances in the identification of intermediates, elucidating the catalytic mechanism of this multi-redox reaction on metal-oxide photoanodes remains a significant experimental and theoretical challenge. Here, we report an experimental analysis of water oxidation kinetics on four widely studied metal oxides, focusing particularly on haematite. We observe that haematite is able to access a reaction mechanism that is third order in surface-hole density, which is assigned to equilibration between three surface holes and M(OH)-O-M(OH) sites. This reaction exhibits low activation energy (E

References

  1. Zhu, S. & Wang, D. Photocatalysis: basic principles, diverse forms of implementations and emerging scientific opportunities. Adv. Energy Mater. 17, 1700841 (2017). - PubMed
  2. Berardi, S. et al. Molecular artificial photosynthesis. Chem. Soc. Rev. 43, 7501–7519 (2014). - PubMed
  3. Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010). - PubMed
  4. Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006). - PubMed
  5. Sun, K. et al. A comparison of the chemical, optical and electrocatalytic properties of water-oxidation catalysts for use in integrated solar-fuel generators. Energy Environ. Sci. 10, 987–1002 (2017). - PubMed
  6. McCrory, C. C. L., Jung, S., Peters, J. C. & Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135, 16977–16987 (2013). - PubMed
  7. Kärkäs, M. D. & Åkermark, B. Water oxidation using earth-abundant transition metal catalysts: opportunities and challenges. Dalton Trans. 45, 14421–14461 (2016). - PubMed
  8. Blakemore, J. D., Crabtree, R. H. & Brudvig, G. W. Molecular catalysts for water oxidation. Chem. Rev. 115, 12974–13005 (2015). - PubMed
  9. Llobet, A. Molecular Water Oxidation Catalysis: A Key Topic for New Sustainable Energy Conversion Schemes (2014, Wiley). - PubMed
  10. Dau, H. et al. The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem 2, 724–761 (2010). - PubMed
  11. Shinagawa, T., Garcia-Esparza, A. T. & Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 5, 13801 (2015). - PubMed
  12. Gerischer, H. The impact of semiconductors on the concepts of electrochemistry. Electrochim. Acta 35, 1677–1699 (1990). - PubMed
  13. Francàs, L., Mesa, C. A., Pastor, E., Le Formal, F. & Durrant, J. R. in Advances in Photoelectrochemical Water Splitting: Theory, Experiment and Systems Analysis (eds Tilley, S. D., Lany, S. & van de Krol, R.) Ch. 5 (Royal Society of Chemistry, 2018). - PubMed
  14. Pastor, E. et al. Spectroelectrochemical analysis of the mechanism of (photo)electrochemical hydrogen evolution at a catalytic interface. Nat. Commun. 8, 14280 (2017). - PubMed
  15. Mesa, C. A. et al. Kinetics of photoelectrochemical oxidation of methanol on hematite photoanodes. J. Am. Chem. Soc. 139, 11537–11543 (2017). - PubMed
  16. Le Formal, F. et al. Rate law analysis of water oxidation on a hematite surface. J. Am. Chem. Soc. 137, 6629–6637 (2015). - PubMed
  17. Ma, Y. et al. Rate law analysis of water oxidation and hole scavenging on a BiVO - PubMed
  18. Kafizas, A. et al. Water oxidation kinetics of accumulated holes on the surface of a TiO - PubMed
  19. Pesci, F. M., Cowan, A. J., Alexander, B. D., Durrant, J. R. & Klug, D. R. Charge carrier dynamics on mesoporous WO - PubMed
  20. Barroso, M., Pendlebury, S. R., Cowan, A. J. & Durrant, J. R. Charge carrier trapping, recombination and transfer in hematite (α-Fe - PubMed
  21. Roger, I., Shipman, M. A. & Symes, M. D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 0003 (2017). - PubMed
  22. Rosser, T. E., Gross, M. A., Lai, Y.-H. & Reisner, E. Precious-metal free photoelectrochemical water splitting with immobilised molecular Ni and Fe redox catalysts. Chem. Sci. 7, 4024–4035 (2016). - PubMed
  23. Zhang, Y. et al. Rate-limiting O−O bond formation pathways for water oxidation on hematite photoanode. J. Am. Chem. Soc. 140, 3264–3269 (2018). - PubMed
  24. Schulze, M., Kunz, V., Frischmann, P. D. & Würthner, F. A supramolecular ruthenium macrocycle with high catalytic activity for water oxidation that mechanistically mimics photosystem II. Nat. Chem. 8, 576–583 (2016). - PubMed
  25. Kafizas, A. et al. Optimizing the activity of nanoneedle structured WO - PubMed
  26. Cowan, A. J., Leng, W., Barnes, P. R. F., Klug, D. R. & Durrant, J. R. Charge carrier separation in nanostructured TiO - PubMed
  27. Ma, Y., Le Formal, F., Kafizas, A., Pendlebury, S. R. & Durrant, J. R. Efficient suppression of back electron/hole recombination in cobalt phosphate surface-modified undoped bismuth vanadate photoanodes. J. Mater. Chem. A 3, 20649–20657 (2015). - PubMed
  28. Wang, X. H. et al. Pyrogenic iron(III)-doped TiO - PubMed
  29. Wahlström, E. et al. Bonding of gold nanoclusters to oxygen vacancies on rutile TiO - PubMed
  30. Zandi, O. & Hamann, T. W. Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy. Nat. Chem. 8, 778–783 (2016). - PubMed
  31. Cowan, A. J. et al. Activation energies for the rate-limiting step in water photooxidation by nanostructured α-Fe - PubMed
  32. Kosmulski, M. pH-dependent surface charging and points of zero charge. IV. Update and new approach. J. Colloid Interface Sci. 337, 439–448 (2009). - PubMed
  33. Aharon, E. & Toroker, M. C. The effect of covering Fe - PubMed
  34. Yatom, N., Elbaz, Y., Navon, S. & Caspary Toroker, M. Identifying the bottleneck of water oxidation by ab initio analysis of in situ optical absorbance spectrum. Phys. Chem. Chem. Phys. 19, 17278–17286 (2017). - PubMed
  35. Seriani, N. Ab initio simulations of water splitting on hematite. J. Phys. Condens. Matter 29, 463002 (2017). - PubMed
  36. Grave, D. A., Yatom, N., Ellis, D. S., Toroker, M. C. & Rothschild, A. The ‘rust’ challenge: on the correlations between electronic structure, excited state dynamics and photoelectrochemical performance of hematite photoanodes for solar water splitting. Adv. Mater. 30, 1706577 (2018). - PubMed
  37. Nguyen, M.-T., Seriani, N. & Gebauer, R. Back cover: defective α-Fe - PubMed
  38. Zhang, X., Klaver, P., Van Santen, R., Van De Sanden, M. C. M. & Bieberle-Hütter, A. Oxygen evolution at hematite surfaces: the impact of structure and oxygen vacancies on lowering the overpotential. J. Phys. Chem. C 120, 18201–18208 (2016). - PubMed
  39. Kay, A., Cesar, I. & Grätzel, M. New benchmark for water photooxidation by nanostructured α-Fe - PubMed
  40. Cornuz, M., Grätzel, M. & Sivula, K. Preferential orientation in hematite films for solar hydrogen production via water splitting. Chem. Vap. Depos. 16, 291–295 (2010). - PubMed
  41. Yamada, H., Siems, W. F., Koike, T. & Hurst, J. K. Mechanisms of water oxidation catalyzed by the cis,cis-[(bpy) - PubMed
  42. Pham, H. H., Cheng, M.-J., Frei, H. & Wang, L.-W. Surface proton hopping and fast-kinetics pathway of water oxidation on Co - PubMed
  43. Askerka, M., Brudvig, G. W. & Batista, V. S. The O - PubMed
  44. Amin, M. et al. Proton-coupled electron transfer during the S-state transitions of the oxygen-evolving complex of photosystem II. J. Phys. Chem. B 119, 7366–7377 (2015). - PubMed
  45. Rossmeisl, J. et al. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607, 83–89 (2007). - PubMed
  46. Siegbahn, P. E. M. O–O bond formation in the S - PubMed
  47. Siegbahn, P. E. M. Water oxidation mechanism in photosystem II, including oxidations, proton release pathways, O–O bond formation and O - PubMed
  48. Pecoraro, V. L., Baldwin, M. J., Caudle, M. T., Hsieh, W.-Y. & Law, N. A. A proposal for water oxidation in photosystem II. Pure Appl. Chem. 70, 925–929 (1998). - PubMed
  49. Vrettos, J. S., Limburg, J. & Brudvig, G. W. Mechanism of photosynthetic water oxidation: combining biophysical studies of photosystem II with inorganic model chemistry. Biochim. Biophys. Acta 1503, 229–245 (2001). - PubMed
  50. Sproviero, E. M., Gascó, J. A., Mcevoy, J. P., Brudvig, G. W. & Batista, V. S. Quantum mechanics/molecular mechanics study of the catalytic cycle of water splitting in photosystem II. J. Am. Chem. Soc. 130, 3428–3442 (2008). - PubMed
  51. Barber, J. A mechanism for water splitting and oxygen production in photosynthesis. Nat. Plants 3, 17041 (2017). - PubMed
  52. Barber, J. Photosystem II: the water splitting enzyme of photosynthesis and the origin of oxygen in our atmosphere. Q. Rev. Biophys. 49, e14 (2017). - PubMed
  53. Li, X. & Siegbahn, P. E. M. Water oxidation for simplified models of the oxygen‐evolving complex in photosystem II. Chem. A Eur. J. 21, 18821–18827 (2015). - PubMed
  54. Klauss, A., Haumann, M. & Dau, H. Seven steps of alternating electron and proton transfer in photosystem II water oxidation traced by time-resolved photothermal beam deflection at improved sensitivity. J. Phys. Chem. B 119, 2677–2689 (2015). - PubMed
  55. Vinyard, D. J. & Brudvig, G. W. Progress toward a molecular mechanism of water oxidation in photosystem II. Annu. Rev. Phys. Chem. 68, 101–116 (2017). - PubMed
  56. Zhang, M. & Frei, H. Water oxidation mechanisms of metal oxide catalysts by vibrational spectroscopy of transient intermediates. Annu. Rev. Phys. Chem. 68, 209–231 (2017). - PubMed
  57. Zhang, M., De Respinis, M. & Frei, H. Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nat. Chem. 6, 362–367 (2014). - PubMed
  58. Yang, K. R. et al. Solution structures of highly active molecular Ir water-oxidation catalysts from density functional theory combined with high-energy X-ray scattering and EXAFS spectroscopy. J. Am. Chem. Soc. 138, 5511–5514 (2016). - PubMed
  59. Gamba, I., Codolà, Z., Lloret-Fillol, J. & Costas, M. Making and breaking of the O–O bond at iron complexes. Coord. Chem. Rev. 334, 2–24 (2017). - PubMed
  60. Tinberg, C. E. & Lippard, S. J. Dioxygen activation in soluble methane monooxygenase. Acc. Chem. Res. 280, 280–288 (2011). - PubMed
  61. Shu, L. et al. An Fe - PubMed
  62. Friedle, S., Reisner, E. & Lippard, S. J. Current challenges of modeling diiron enzyme active sites for dioxygen activation by biomimetic synthetic complexes. Chem. Soc. Rev. 39, 2768–2779 (2010). - PubMed

Publication Types