Display options
Share it on

ACS Biomater Sci Eng. 2019 Jul 08;5(7):3663-3675. doi: 10.1021/acsbiomaterials.8b01568. Epub 2019 Jun 11.

A magnetics-based approach for fine-tuning afterload in engineered heart tissues.

ACS biomaterials science & engineering

Marita L Rodriguez, Tessa R Werner, Benjamin Becker, Thomas Eschenhagen, Marc N Hirt

Affiliations

  1. Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany.
  2. DZHK (German Center for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany.

PMID: 31637285 PMCID: PMC6803165 DOI: 10.1021/acsbiomaterials.8b01568

Abstract

Afterload plays important roles during heart development and disease progression, however, studying these effects in a laboratory setting is challenging. Current techniques lack the ability to precisely and reversibly alter afterload over time. Here, we describe a magnetics-based approach for achieving this control and present results from experiments in which this device was employed to sequentially increase afterload applied to rat engineered heart tissues (rEHTs) over a 7-day period. The contractile properties of rEHTs grown on control posts marginally increased over the observation period. The average post deflection, fractional shortening, and twitch velocities measured for afterload-affected tissues initially followed this same trend, but fell below control tissue values at high magnitudes of afterload. However, the average force, force production rate, and force relaxation rate for these rEHTs were consistently up to 3-fold higher than in control tissues. Transcript levels of hypertrophic or fibrotic markers and cell size remained unaffected by afterload, suggesting that the increased force output was not accompanied by pathological remodeling. Accordingly, the increased force output was fully reversed to control levels during a stepwise decrease in afterload over 4 hours. Afterload application did not affect systolic or diastolic tissue lengths, indicating that the afterload system was likely not a source of changes in preload strain. In summary, the afterload system developed herein is capable of fine-tuning EHT afterload while simultaneously allowing optical force measurements. Using this system, we found that small daily alterations in afterload can enhance the contractile properties of rEHTs, while larger increases can have temporary undesirable effects. Overall, these findings demonstrate the significant role that afterload plays in cardiac force regulation. Future studies with this system may allow for novel insights into the mechanisms that underlie afterload-induced adaptations in cardiac force development.

Keywords: afterload; engineered heart tissues (EHTs); magnetics; maturation

References

  1. J Mol Cell Cardiol. 2015 Apr;81:1-9 - PubMed
  2. Circ Res. 1981 Oct;49(4):829-42 - PubMed
  3. Bioelectromagnetics. 2015 Jan;36(1):1-9 - PubMed
  4. Acta Biomater. 2017 Feb;49:204-217 - PubMed
  5. J Am Soc Echocardiogr. 2016 May;29(5):448-460.e9 - PubMed
  6. Tissue Eng Part A. 2014 Feb;20(3-4):854-63 - PubMed
  7. Circulation. 1976 Feb;53(2):293-302 - PubMed
  8. Ultrasound Obstet Gynecol. 2008 Oct;32(5):673-81 - PubMed
  9. Biophys J. 2008 Oct;95(7):3479-87 - PubMed
  10. Tissue Eng Part A. 2012 May;18(9-10):910-9 - PubMed
  11. Arch Int Physiol Biochim. 1959 Jun;67(3):358-73 - PubMed
  12. J Biomed Eng. 1982 Jan;4(1):9-16 - PubMed
  13. Am J Physiol. 1963 Apr;204:604-10 - PubMed
  14. Int J Numer Method Biomed Eng. 2018 Dec;34(12):e3147 - PubMed
  15. Circ Res. 1982 Oct;51(4):430-8 - PubMed
  16. Basic Res Cardiol. 2012 Nov;107(6):307 - PubMed
  17. Int J Cardiol. 2013 Aug 10;167(3):798-808 - PubMed
  18. Ann Thorac Surg. 2011 Jan;91(1):150-6 - PubMed
  19. Am J Physiol Heart Circ Physiol. 2014 Jun 1;306(11):H1525-39 - PubMed
  20. J Mol Cell Cardiol. 2016 Sep;98:146-58 - PubMed
  21. J Am Coll Cardiol. 1992 Mar 1;19(3):619-29 - PubMed
  22. Cardiovasc Res. 1998 Jan;37(1):46-57 - PubMed
  23. Stem Cells. 2015 Jul;33(7):2148-57 - PubMed
  24. Biosci Rep. 2016 Dec 5;36(6): - PubMed
  25. Cardiovasc Res. 1994 Aug;28(8):1199-208 - PubMed
  26. Br J Obstet Gynaecol. 1982 Oct;89(10):839-44 - PubMed
  27. Tissue Eng Part A. 2008 Jan;14(1):49-58 - PubMed
  28. Electromagn Biol Med. 2015 Mar;34(1):77-84 - PubMed
  29. Adv Drug Deliv Rev. 2016 Jan 15;96:214-24 - PubMed
  30. Circ Arrhythm Electrophysiol. 2011 Oct;4(5):761-9 - PubMed
  31. Am J Physiol. 1973 May;224(5):1195-9 - PubMed
  32. Am J Physiol Heart Circ Physiol. 2007 Dec;293(6):H3759-67 - PubMed
  33. PLoS One. 2013 Aug 01;8(8):e70416 - PubMed
  34. Am J Physiol Heart Circ Physiol. 2013 Jan 15;304(2):H175-82 - PubMed
  35. Heart. 2000 Jul;84(1):59-63 - PubMed
  36. Phys Med Biol. 1986 Jul;31(7):763-9 - PubMed
  37. J Physiol. 1912 Dec 9;45(5):307-17 - PubMed
  38. J Clin Invest. 1965 Jun;44:966-77 - PubMed
  39. Biomaterials. 2008 Mar;29(7):844-56 - PubMed
  40. Hypertension. 2007 May;49(5):962-70 - PubMed
  41. Oxid Med Cell Longev. 2013;2013:529173 - PubMed
  42. J Mol Cell Cardiol. 2011 Apr;50(4):731-9 - PubMed
  43. Circ Res. 2011 Jun 24;109(1):47-59 - PubMed
  44. Circ Res. 1963 Jun;12:597-610 - PubMed
  45. Comput Methods Biomech Biomed Engin. 2012;15(10):1015-41 - PubMed
  46. Circ Res. 1971 Jun;28(6):611-21 - PubMed
  47. Prog Biophys Mol Biol. 2017 Nov;130(Pt B):212-222 - PubMed
  48. FASEB J. 2005 Jan;19(1):155-7 - PubMed
  49. Biomaterials. 2016 Dec;111:66-79 - PubMed
  50. Biomaterials. 2014 Mar;35(9):2798-808 - PubMed
  51. J Biomech. 2015 Nov 5;48(14):3890-6 - PubMed
  52. Nature. 2015 Dec 10;528(7581):276-9 - PubMed
  53. J Mol Cell Cardiol. 2011 Feb;50(2):367-76 - PubMed
  54. Biomaterials. 2015 Aug;60:82-91 - PubMed
  55. Biophys J. 1969 Feb;9(2):189-208 - PubMed
  56. Prog Biophys Mol Biol. 2005 Feb-Apr;87(2-3):289-320 - PubMed
  57. Circulation. 1984 Apr;69(4):645-54 - PubMed
  58. J Mol Cell Cardiol. 2018 May;118:147-158 - PubMed
  59. J Toxicol Sci. 2017;42(2):223-231 - PubMed
  60. Circ Res. 2010 Jul 9;107(1):35-44 - PubMed
  61. J Magn Reson Imaging. 2000 Jul;12(1):122-39 - PubMed
  62. Am J Physiol. 1962 May;202:931-9 - PubMed
  63. Eur Heart J. 1991 Apr;12(4):488-94 - PubMed
  64. Front Physiol. 2014 Aug 21;5:318 - PubMed
  65. PLoS One. 2015 Dec 29;10(12):e0144309 - PubMed
  66. Am J Med Genet C Semin Med Genet. 2013 Aug;163C(3):157-68 - PubMed
  67. Circulation. 2010 Sep 7;122(10):993-1003 - PubMed

Publication Types

Grant support