Display options
Share it on

Bioengineering (Basel). 2019 Oct 02;6(4). doi: 10.3390/bioengineering6040092.

Technologies for Biogas Upgrading to Biomethane: A Review.

Bioengineering (Basel, Switzerland)

Amir Izzuddin Adnan, Mei Yin Ong, Saifuddin Nomanbhay, Kit Wayne Chew, Pau Loke Show

Affiliations

  1. Institute of Sustainable Energy, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia. [email protected].
  2. Institute of Sustainable Energy, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia. [email protected].
  3. Institute of Sustainable Energy, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia. [email protected].
  4. Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia. [email protected].
  5. Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia. [email protected].

PMID: 31581659 PMCID: PMC6956267 DOI: 10.3390/bioengineering6040092

Abstract

The environmental impacts and high long-term costs of poor waste disposal have pushed the industry to realize the potential of turning this problem into an economic and sustainable initiative. Anaerobic digestion and the production of biogas can provide an efficient means of meeting several objectives concerning energy, environmental, and waste management policy. Biogas contains methane (60%) and carbon dioxide (40%) as its principal constituent. Excluding methane, other gasses contained in biogas are considered as contaminants. Removal of these impurities, especially carbon dioxide, will increase the biogas quality for further use. Integrating biological processes into the bio-refinery that effectively consume carbon dioxide will become increasingly important. Such process integration could significantly improve the sustainability of the overall bio-refinery process. The biogas upgrading by utilization of carbon dioxide rather than removal of it is a suitable strategy in this direction. The present work is a critical review that summarizes state-of-the-art technologies for biogas upgrading with particular attention to the emerging biological methanation processes. It also discusses the future perspectives for overcoming the challenges associated with upgradation. While biogas offers a good substitution for fossil fuels, it still not a perfect solution for global greenhouse gas emissions and further research still needs to be conducted.

Keywords: CO2 utilization; anaerobic digestion; bio-succinic acid; biogas upgrading; biomethane; feasibility assessment

Conflict of interest statement

The authors declare that they have no competing interests.

References

  1. Water Sci Technol. 2002;45(10):65-73 - PubMed
  2. Appl Microbiol Biotechnol. 2000 Jul;54(1):23-7 - PubMed
  3. Appl Microbiol Biotechnol. 2004 Nov;65(6):664-70 - PubMed
  4. Biotechnol Adv. 2018 Mar - Apr;36(2):452-466 - PubMed
  5. J Hazard Mater. 2007 Jun 18;144(3):698-702 - PubMed
  6. Appl Microbiol Biotechnol. 2002 Apr;58(5):663-8 - PubMed
  7. Nat Rev Microbiol. 2009 Aug;7(8):568-77 - PubMed
  8. Appl Microbiol Biotechnol. 2013 Feb;97(3):1373-81 - PubMed
  9. Bioresour Technol. 2017 Feb;225:429-437 - PubMed
  10. Chem Rev. 2015 Dec 9;115(23):12936-73 - PubMed
  11. Bioresour Technol. 2018 Oct;266:26-33 - PubMed
  12. Chem Soc Rev. 2011 Jul;40(7):3703-27 - PubMed
  13. Appl Biochem Biotechnol. 2014 Feb;172(4):1909-28 - PubMed
  14. Appl Biochem Biotechnol. 2008 Mar;145(1-3):111-9 - PubMed
  15. Appl Environ Microbiol. 1999 May;65(5):2260-3 - PubMed
  16. Waste Manag. 2012 Sep;32(9):1634-50 - PubMed
  17. Chem Rev. 2015 Dec 9;115(23):12888-935 - PubMed
  18. Biotechnol Adv. 2016 Sep-Oct;34(5):451-472 - PubMed
  19. Angew Chem Int Ed Engl. 2016 Jun 20;55(26):7296-343 - PubMed
  20. Waste Manag Res. 2015 May;33(5):429-38 - PubMed
  21. Biotechnol Bioeng. 2012 Nov;109(11):2729-36 - PubMed
  22. Bioprocess Biosyst Eng. 2003 Nov;26(1):63-7 - PubMed
  23. Trends Biotechnol. 2016 Jun;34(6):506-519 - PubMed
  24. J Microbiol Biotechnol. 2008 May;18(5):908-12 - PubMed
  25. Environ Sci Technol. 2015 Oct 20;49(20):12585-93 - PubMed
  26. Chem Rev. 2017 Jul 26;117(14):9804-9838 - PubMed
  27. Nat Rev Microbiol. 2014 Dec;12(12):809-21 - PubMed
  28. J Microbiol Biotechnol. 2009 Nov;19(11):1379-84 - PubMed
  29. Environ Sci Technol. 2014 Dec 16;48(24):14624-31 - PubMed
  30. Science. 2006 Jan 27;311(5760):484-9 - PubMed
  31. J Microbiol Biotechnol. 2008 Jul;18(7):1252-6 - PubMed
  32. Chem Sci. 2016 Apr 1;7(4):2883-2887 - PubMed
  33. J Am Chem Soc. 2014 Sep 24;136(38):13319-25 - PubMed
  34. Angew Chem Int Ed Engl. 2016 Jun 1;55(23):6771-5 - PubMed
  35. Bioprocess Biosyst Eng. 2017 Apr;40(4):479-497 - PubMed
  36. Waste Manag. 2017 Oct;68:146-156 - PubMed
  37. J Hazard Mater. 2007 Jun 1;144(1-2):369-76 - PubMed
  38. Bioprocess Biosyst Eng. 2010 May;33(4):465-71 - PubMed
  39. Bioresour Technol. 2015 Feb;178:323-329 - PubMed
  40. Chem Soc Rev. 2014 Jan 21;43(2):631-75 - PubMed
  41. Metab Eng Commun. 2018 Jun 28;7:e00075 - PubMed
  42. Biotechnol Biofuels. 2015 Nov 14;8:181 - PubMed
  43. Environ Sci Technol. 2014 Oct 21;48(20):12464-8 - PubMed
  44. Appl Microbiol Biotechnol. 2012 Jul;95(2):321-9 - PubMed
  45. Biotechnol Bioeng. 2012 Apr;109(4):1088-94 - PubMed
  46. Nature. 2018 Dec;564(7734):27-30 - PubMed

Publication Types

Grant support