Display options
Share it on

Front Physiol. 2019 Sep 27;10:1192. doi: 10.3389/fphys.2019.01192. eCollection 2019.

A Physiology-Based Model of Human Bile Acid Metabolism for Predicting Bile Acid Tissue Levels After Drug Administration in Healthy Subjects and BRIC Type 2 Patients.

Frontiers in physiology

Vanessa Baier, Henrik Cordes, Christoph Thiel, José V Castell, Ulf P Neumann, Lars M Blank, Lars Kuepfer

Affiliations

  1. Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Germany.
  2. Department of Surgery, University Hospital Aachen, Aachen, Germany.
  3. Unit of Experimental Hepatology, IIS Hospital La Fe, Faculty of Medicine, University of Valencia and CIBEREHD, Valencia, Spain.

PMID: 31611804 PMCID: PMC6777137 DOI: 10.3389/fphys.2019.01192

Abstract

Drug-induced liver injury (DILI) is a matter of concern in the course of drug development and patient safety, often leading to discontinuation of drug-development programs or early withdrawal of drugs from market. Hepatocellular toxicity or impairment of bile acid (BA) metabolism, known as cholestasis, are the two clinical forms of DILI. Whole-body physiology-based modelling allows a mechanistic investigation of the physiological processes leading to cholestasis in man. Objectives of the present study were: (1) the development of a physiology-based model of the human BA metabolism, (2) population-based model validation and characterisation, and (3) the prediction and quantification of altered BA levels in special genotype subgroups and after drug administration. The developed physiology-based bile acid (PBBA) model describes the systemic BA circulation in humans and includes mechanistically relevant active and passive processes such as the hepatic synthesis, gallbladder emptying, transition through the gastrointestinal tract, reabsorption into the liver, distribution within the whole body, and excretion via urine and faeces. The kinetics of active processes were determined for the exemplary BA glycochenodeoxycholic acid (GCDCA) based on blood plasma concentration-time profiles. The robustness of our PBBA model was verified with population simulations of healthy individuals. In addition to plasma levels, the possibility to estimate BA concentrations in relevant tissues like the intracellular space of the liver enhance the mechanistic understanding of cholestasis. We analysed BA levels in various tissues of Benign Recurrent Intrahepatic Cholestasis type 2 (BRIC2) patients and our simulations suggest a higher susceptibility of BRIC2 patients toward cholestatic DILI due to BA accumulation in the liver. The effect of drugs on systemic BA levels were simulated for cyclosporine A (CsA). Our results confirmed the higher risk of DILI after CsA administration in healthy and BRIC2 patients. The presented PBBA model enhances our mechanistic understanding underlying cholestasis and drug-induced alterations of BA levels in blood and organs. The developed PBBA model might be applied in the future to anticipate potential risk of cholestasis in patients.

Copyright © 2019 Baier, Cordes, Thiel, Castell, Neumann, Blank and Kuepfer.

Keywords: BRIC type 2; DILI; PBPK; bile acids; cholestasis; computational modelling

References

  1. J Hepatol. 2005 Aug;43(2):342-57 - PubMed
  2. Drug Metab Pharmacokinet. 2018 Feb;33(1):43-48 - PubMed
  3. Hepatology. 1988 Jul-Aug;8(4):866-78 - PubMed
  4. Methods Mol Biol. 2014;1198:233-47 - PubMed
  5. J Pharm Sci. 2015 Jan;104(1):191-206 - PubMed
  6. J Proteome Res. 2016 Apr 1;15(4):1126-34 - PubMed
  7. EMBO J. 2006 Apr 5;25(7):1419-25 - PubMed
  8. Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3891-6 - PubMed
  9. Am J Dig Dis. 1978 May;23(5):385-91 - PubMed
  10. Scand J Gastroenterol. 1993 Sep;28(9):786-90 - PubMed
  11. J Chromatogr B Analyt Technol Biomed Life Sci. 2013 Dec 30;942-943:53-62 - PubMed
  12. Gut. 1977 Aug;18(8):606-9 - PubMed
  13. Metabolomics. 2018;14(1):1 - PubMed
  14. J Lipid Res. 2009 Aug;50(8):1509-20 - PubMed
  15. News Physiol Sci. 1999 Feb;14:24-29 - PubMed
  16. Hepatology. 1992 Apr;15(4):603-8 - PubMed
  17. FEBS Lett. 1993 Oct 25;333(1-2):193-6 - PubMed
  18. CPT Pharmacometrics Syst Pharmacol. 2014 Jul 09;3:e123 - PubMed
  19. Nature. 2006 Jan 26;439(7075):484-9 - PubMed
  20. J Clin Pharmacol. 1994 Jan;34(1):60-7 - PubMed
  21. Int J Toxicol. 2018 Mar/Apr;37(2):144-154 - PubMed
  22. Front Physiol. 2018 Jun 08;9:631 - PubMed
  23. J Hepatol. 1992 Mar;14(2-3):194-202 - PubMed
  24. Arch Toxicol. 2017 Mar;91(3):1335-1352 - PubMed
  25. Nucleic Acids Res. 2014 Jan;42(Database issue):D1091-7 - PubMed
  26. Int J Mol Sci. 2016 Feb 06;17(2):224 - PubMed
  27. Dig Dis Sci. 1980 Feb;25(2):108-12 - PubMed
  28. Clin Pharmacokinet. 2014 Jan;53(1):89-102 - PubMed
  29. NPJ Syst Biol Appl. 2018 Feb 26;4:10 - PubMed
  30. Clin Nutr. 2018 Aug;37(4):1406-1414 - PubMed
  31. Hepatology. 2019 Feb;69(2):666-683 - PubMed
  32. Gastroenterology. 2004 Jan;126(1):322-42 - PubMed
  33. F1000Res. 2016 Apr 19;5:null - PubMed
  34. CPT Pharmacometrics Syst Pharmacol. 2012 Nov 07;1:e13 - PubMed
  35. J Lipid Res. 1982 Mar;23(3):490-5 - PubMed
  36. Gut. 1978 Jan;19(1):32-9 - PubMed
  37. Gastroenterology. 1997 Jan;112(1):226-35 - PubMed
  38. Gut. 1978 Nov;19(11):1006-14 - PubMed
  39. J Clin Invest. 1983 Apr;71(4):1003-22 - PubMed
  40. J Clin Invest. 1982 Oct;70(4):724-31 - PubMed
  41. Mol Aspects Med. 2017 Aug;56:2-9 - PubMed
  42. J Clin Exp Hepatol. 2014 Mar;4(1):25-36 - PubMed
  43. Hepatology. 2017 Feb;65(2):722-738 - PubMed
  44. PLoS Comput Biol. 2012;8(10):e1002750 - PubMed
  45. Antimicrob Agents Chemother. 2016 Sep 23;60(10):6134-45 - PubMed
  46. Gastroenterology. 2005 Nov;129(5):1445-53 - PubMed
  47. J Pediatr Gastroenterol Nutr. 2012 Jul;55(1):88-90 - PubMed
  48. Front Neurosci. 2017 Nov 07;11:617 - PubMed
  49. Ann Hepatol. 2010 Apr-Jun;9(2):207-10 - PubMed
  50. CPT Pharmacometrics Syst Pharmacol. 2016 Jan;5(1):31-9 - PubMed
  51. Gastroenterology. 1977 Mar;72(3):499-501 - PubMed
  52. J Lipid Res. 1990 Aug;31(8):1433-43 - PubMed
  53. Sci Rep. 2016 May 04;6:25187 - PubMed
  54. Arch Intern Med. 1999 Dec 13-27;159(22):2647-58 - PubMed
  55. AACN Adv Crit Care. 2016 Oct;27(4):430-440 - PubMed
  56. Am J Clin Nutr. 2004 Apr;79(4):570-6 - PubMed
  57. Am J Gastroenterol. 2014 Jul;109(7):950-66; quiz 967 - PubMed
  58. Cell Metab. 2016 Jul 12;24(1):41-50 - PubMed
  59. Curr Drug Targets. 2017;18(8):921-931 - PubMed
  60. Hepatol Res. 2016 Feb;46(2):192-200 - PubMed
  61. J Pharm Sci. 2011 Dec;100(12):5324-45 - PubMed
  62. Drug Metab Dispos. 2012 May;40(5):892-901 - PubMed
  63. Gut. 2017 Jun;66(6):1154-1164 - PubMed
  64. J Hepatol. 2005 Sep;43(3):536-43 - PubMed
  65. Nat Rev Drug Discov. 2005 Jun;4(6):489-99 - PubMed
  66. CPT Pharmacometrics Syst Pharmacol. 2017 Feb;6(2):136-146 - PubMed
  67. Clin Chim Acta. 2016 Aug 1;459:63-72 - PubMed
  68. Methods Mol Biol. 2019;1905:167-174 - PubMed
  69. Toxicology. 2013 Oct 4;312:158-65 - PubMed
  70. J Lipid Res. 2012 Oct;53(10):2231-41 - PubMed
  71. Toxicol Sci. 2015 Feb;143(2):296-307 - PubMed
  72. Cell Metab. 2015 Sep 1;22(3):418-26 - PubMed
  73. Arch Toxicol. 2018 Jan;92(1):553-555 - PubMed
  74. PLoS Comput Biol. 2017 Feb 2;13(2):e1005280 - PubMed
  75. CPT Pharmacometrics Syst Pharmacol. 2016 Oct;5(10):516-531 - PubMed

Publication Types