Display options
Share it on

Front Plant Sci. 2019 Aug 29;10:1054. doi: 10.3389/fpls.2019.01054. eCollection 2019.

Targeted Proteomics Allows Quantification of Ethylene Receptors and Reveals SlETR3 Accumulation in Never-Ripe Tomatoes.

Frontiers in plant science

Yi Chen, Valérie Rofidal, Sonia Hem, Julie Gil, Joanna Nosarzewska, Nathalie Berger, Vincent Demolombe, Mondher Bouzayen, Beenish J Azhar, Samina N Shakeel, G Eric Schaller, Brad M Binder, Véronique Santoni, Christian Chervin, Fuchs, Fuchs

Affiliations

  1. GBF, Université de Toulouse, INRA, Toulouse, France.
  2. BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France.
  3. Department of Biochemistry, Quaid-i-azam University, Islamabad, Pakistan.
  4. Department of Biological Sciences, Dartmouth College, Hanover, NH, United States.
  5. Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, TN, United States.

PMID: 31555314 PMCID: PMC6727826 DOI: 10.3389/fpls.2019.01054

Abstract

Ethylene regulates fruit ripening and several plant functions (germination, plant growth, plant-microbe interactions). Protein quantification of ethylene receptors (ETRs) is essential to study their functions, but is impaired by low resolution tools such as antibodies that are mostly nonspecific, or the lack of sensitivity of shotgun proteomic approaches. We developed a targeted proteomic method, to quantify low-abundance proteins such as ETRs, and coupled this to mRNAs analyses, in two tomato lines: Wild Type (WT) and Never-Ripe (NR) which is insensitive to ethylene because of a gain-of-function mutation in ETR3. We obtained mRNA and protein abundance profiles for each ETR over the fruit development period. Despite a limiting number of replicates, we propose Pearson correlations between mRNA and protein profiles as interesting indicators to discriminate the two genotypes: such correlations are mostly positive in the WT and are affected by the NR mutation. The influence of putative post-transcriptional and post-translational changes are discussed. In NR fruits, the observed accumulation of the mutated ETR3 protein between ripening stages (Mature Green and Breaker + 8 days) may be a cause of NR tomatoes to stay orange. The label-free quantitative proteomics analysis of membrane proteins, concomitant to Parallel Reaction Monitoring analysis, may be a resource to study changes over tomato fruit development. These results could lead to studies about ETR subfunctions and interconnections over fruit development. Variations of RNA-protein correlations may open new fields of research in ETR regulation. Finally, similar approaches may be developed to study ETRs in whole plant development and plant-microorganism interactions.

Keywords: ethylene; hormone; receptor; signaling; tomato

References

  1. Plant Physiol. 1999 Sep;121(1):291-300 - PubMed
  2. Plant Physiol. 2000 Nov;124(3):1079-86 - PubMed
  3. J Biol Chem. 2002 May 31;277(22):19861-6 - PubMed
  4. Plant Physiol. 2002 Dec;130(4):1983-91 - PubMed
  5. Plant Physiol. 2004 Oct;136(2):2921-7 - PubMed
  6. Plant Physiol. 2004 Oct;136(2):2913-20 - PubMed
  7. Plant J. 2005 Mar;41(5):651-9 - PubMed
  8. Plant Physiol. 2006 Dec;142(4):1690-700 - PubMed
  9. Plant J. 2007 Aug;51(3):458-67 - PubMed
  10. Science. 1988 Aug 26;241(4869):1086-9 - PubMed
  11. Bioinformatics. 2010 Apr 1;26(7):966-8 - PubMed
  12. Plant Physiol. 2010 Apr;152(4):1928-39 - PubMed
  13. Plant Methods. 2011 Jun 29;7(1):18 - PubMed
  14. Plant Physiol. 2012 Sep;160(1):488-97 - PubMed
  15. J Exp Bot. 2012 Oct;63(16):5751-61 - PubMed
  16. Breed Sci. 2012 Jun;62(2):202-8 - PubMed
  17. AoB Plants. 2013;5:plt010 - PubMed
  18. Curr Opin Plant Biol. 2013 Oct;16(5):554-60 - PubMed
  19. J Inorg Biochem. 2014 Apr;133:58-62 - PubMed
  20. J Agric Food Chem. 2015 Sep 16;63(36):7995-8007 - PubMed
  21. Plant Physiol. 2015 Sep;169(1):85-95 - PubMed
  22. Plant Physiol. 2016 May;171(1):675-93 - PubMed
  23. Proteomics. 2016 Aug;16(15-16):2146-59 - PubMed
  24. Plant Physiol. 2016 Aug;171(4):2798-809 - PubMed
  25. Proteomics. 2017 Jan;17(1-2): - PubMed
  26. Plant J. 2017 Apr;90(2):396-417 - PubMed
  27. MBio. 2017 Jan 31;8(1): - PubMed
  28. Plant Sci. 2018 Nov;276:63-72 - PubMed
  29. Front Plant Sci. 2018 Nov 08;9:1626 - PubMed
  30. Mol Plant. 2019 Jan 7;12(1):7-9 - PubMed
  31. Plant J. 1995 Feb;7(2):253-60 - PubMed
  32. Science. 1993 Oct 22;262(5133):539-44 - PubMed
  33. Science. 1995 Dec 15;270(5243):1807-9 - PubMed
  34. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5812-7 - PubMed
  35. Cell. 1998 Jul 24;94(2):261-71 - PubMed

Publication Types