Display options
Share it on

Oncoimmunology. 2019 May 16;8(10):e1616153. doi: 10.1080/2162402X.2019.1616153. eCollection 2019.

Caloric restriction promotes the stemness and antitumor activity of T lymphocytes.

Oncoimmunology

Federico Pietrocola, Guido Kroemer

Affiliations

  1. Institute for Research in Biomedicine, Barcelona, Spain.
  2. INSERM, U1138, Paris, France.
  3. Gustave Roussy Cancer Campus, Villejuif, France.
  4. Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.
  5. Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France.
  6. Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.
  7. Université Pierre et Marie Curie, Paris, France.
  8. Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
  9. Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.

PMID: 31646069 PMCID: PMC6791451 DOI: 10.1080/2162402X.2019.1616153

Abstract

Recent findings have shed new light on the mechanisms through which tumor-infiltrating lymphocytes (TILs) maintain their cytotoxic potential in the context of checkpoint blockade or adoptive transfer therapies. As a consequence of the ionic unbalance occurring in the tumor microenvironment, TILs enter an adaptive caloric-restricted state, characterized by a decline in nucleocytosolic acetyl CoA levels and induction of autophagy. These events dictate an epigenetic program that drives the acquisition of a stem-cell-like phenotype and ultimately improves antitumor function. These findings open the way to novel anticancer therapies based on the induction of autophagy by pharmacological caloric restriction mimetics.

© 2019 Taylor & Francis Group, LLC.

Keywords: Autophagy; aging; hydroxycitrate; immune checkpoints; immunometabolism; longevity; methionine

References

  1. Cancer Cell. 2016 Jul 11;30(1):147-160 - PubMed
  2. Cell Rep. 2018 Feb 27;22(9):2395-2407 - PubMed
  3. Cell. 2018 Nov 1;175(4):998-1013.e20 - PubMed
  4. Nat Rev Drug Discov. 2014 Oct;13(10):727-40 - PubMed
  5. Nature. 2009 Jul 2;460(7251):108-12 - PubMed
  6. Science. 2019 Mar 29;363(6434): - PubMed
  7. Mol Cell. 2014 Mar 6;53(5):710-25 - PubMed
  8. PLoS Genet. 2014 May 01;10(5):e1004347 - PubMed
  9. Cell Stem Cell. 2014 Jun 5;14(6):810-23 - PubMed
  10. Cell. 2014 Dec 18;159(7):1591-602 - PubMed
  11. Immunity. 2019 Jan 15;50(1):181-194.e6 - PubMed
  12. Cell Metab. 2015 Jun 2;21(6):805-21 - PubMed
  13. Cell Metab. 2019 Mar 5;29(3):592-610 - PubMed
  14. Nat Med. 2011 Sep 18;17(10):1290-7 - PubMed
  15. Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19448-53 - PubMed
  16. Cell Death Differ. 2015 Mar;22(3):499-508 - PubMed
  17. Nature. 2016 Sep 22;537(7621):539-543 - PubMed
  18. Nat Rev Drug Discov. 2017 Jul;16(7):487-511 - PubMed
  19. Nature. 2016 Sep 15;537(7620):417-421 - PubMed
  20. Science. 2018 Jan 26;359(6374): - PubMed
  21. Autophagy. 2017 Mar 4;13(3):567-578 - PubMed
  22. Science. 2018 Mar 23;359(6382):1350-1355 - PubMed
  23. Cell Metab. 2017 Jul 5;26(1):94-109 - PubMed
  24. Science. 2015 Apr 3;348(6230):62-8 - PubMed

Publication Types