Display options
Share it on

Neurophotonics. 2019 Oct;6(4):040501. doi: 10.1117/1.NPh.6.4.040501. Epub 2019 Oct 15.

Voltage-gated potassium channels are critical for infrared inhibition of action potentials: an experimental study.

Neurophotonics

Mohit Ganguly, Jeremy B Ford, Junqi Zhuo, Matthew T McPheeters, Michael W Jenkins, Hillel J Chiel, E Duco Jansen

Affiliations

  1. Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States.
  2. Vanderbilt University, Biophotonics Center, Nashville, Tennessee, United States.
  3. Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States.
  4. Case Western Reserve University, Department of Pediatrics, Cleveland, Ohio, United States.
  5. Case Western Reserve University, Department of Biology, Cleveland, Ohio, United States.
  6. Case Western Reserve University, Department of Neurosciences, Cleveland, Ohio, United States.
  7. Vanderbilt University, Department of Neurological Surgery, Nashville, Tennessee, United States.

PMID: 31620544 PMCID: PMC6792434 DOI: 10.1117/1.NPh.6.4.040501

Abstract

Thermal block of unmyelinated axons may serve as a modality for control, suggesting a means for providing therapies for pain. Computational modeling predicted that potassium channels are necessary for mediating thermal block of propagating compound action potentials (CAPs) with infrared (IR) light. Our study tests that hypothesis. Results suggest that potassium channel blockers disrupt the ability of IR to block propagating CAPs in

© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.

Keywords: infrared inhibition; potassium channels; sodium channels; tetraethylammonium chloride; tetrodotoxin

References

  1. J Biomed Opt. 2016 Jun 1;21(6):60505 - PubMed
  2. J Gen Physiol. 1981 Jul;78(1):87-110 - PubMed
  3. J Physiol. 2005 May 1;564(Pt 3):931-40 - PubMed
  4. Biophys J. 2007 Oct 1;93(7):2567-80 - PubMed
  5. Ann N Y Acad Sci. 1959 Aug 28;81:221-46 - PubMed
  6. J Neural Eng. 2019 Jun;16(3):036020 - PubMed
  7. Korean J Anesthesiol. 2015 Aug;68(4):321-2 - PubMed
  8. Neurophotonics. 2014 Jul;1(1):011010 - PubMed
  9. Sci Rep. 2013;3:2600 - PubMed
  10. Sci Rep. 2017 Jun 12;7(1):3275 - PubMed
  11. Exp Neurol. 1986 Jul;93(1):128-37 - PubMed
  12. Neurosci Lett. 1979 Apr;12(1):87-92 - PubMed
  13. J Gen Physiol. 1983 Apr;81(4):485-512 - PubMed
  14. Curr Mol Imaging. 2014 Jul;3(2):162-177 - PubMed
  15. Opt Lett. 2005 Mar 1;30(5):504-6 - PubMed
  16. PLoS One. 2011 Mar 09;6(3):e17779 - PubMed
  17. J Neural Eng. 2018 Feb;15(1):011001 - PubMed
  18. J Physiol. 1993 Sep;469:625-38 - PubMed
  19. J Physiol. 1970 Nov;211(1):217-44 - PubMed
  20. IEEE Trans Biomed Eng. 2012 Jun;59(6):1758-69 - PubMed
  21. J Neurobiol. 2001 Nov 15;49(3):188-99 - PubMed
  22. Neurophotonics. 2016 Oct;3(4):040501 - PubMed
  23. J Physiol. 1990 Mar;422:103-26 - PubMed
  24. World Neurosurg. 2014 Dec;82(6):1359-68 - PubMed
  25. Pain Pract. 2010 Mar-Apr;10(2):103-12 - PubMed
  26. J Biomed Opt. 2009 Nov-Dec;14(6):060501 - PubMed
  27. Brain Res. 1982 Feb 11;233(2):424-30 - PubMed

Publication Types

Grant support